Dieser Online-Shop verwendet Cookies für ein optimales Einkaufserlebnis. Dabei werden beispielsweise die Session-Informationen oder die Spracheinstellung auf Ihrem Rechner gespeichert. Ohne Cookies ist der Funktionsumfang des Online-Shops eingeschränkt. Sind Sie damit nicht einverstanden, klicken Sie bitte hier.

Deep Reinforcement Learning

ISBN: 9783747500361

von Maxim Lapan
2. Auflage 2020
ca. 250 Seiten

Erscheint im Juli 2020

Das umfassende Praxis-Handbuch

  • Praktische und umfassende Einführung in Reinforcement Learning von den grundlegenden Prinzipien bis hin zu den neuesten Algorithmen
  • Die wichtigsten Methoden anschaulich erläutert: Deep-Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und mehr
  • Praktische Implementierung aller Methoden mit Beispielcode in Python


Reinforcement Learning ist ein Teilgebiet des Machine Learnings, das sich auf die anspruchsvolle Aufgabe konzentriert, optimales Verhalten in komplexen Umgebungen zu erlernen. Der Lernvorgang wird ausschließlich durch den Wert einer Belohnung und durch Beobachtung der Umgebung gesteuert.

In diesem Buch beschreibt Maxim Lapan alle wichtigen Methoden des Reinforcement Learnings praxisnah und anhand von Implementierungsbeispielen in Python. Auf diese Weise vermittelt er nicht nur die Grundlagen des Reinforcement Learnings, sondern zeigt auch anschaulich, wie die einzelnen Methoden in der Praxis eingesetzt werden. Unter Verwendung der Bibliothek PyTorch können so beispielsweise Neuronale Netze für Atari-Spiele oder Vier Gewinnt trainiert werden. In umfangreicheren Implementierungsbeispielen zeigt Maxim Lapan darüber hinaus den Einsatz von Reinforcement Learning für den Handel mit Aktien und Natural Language Processing.

Es werden grundlegende Kenntnisse in den Bereichen Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt.


Über den Autor:
Maxim Lapan ist Deep-Learning-Enthusiast und unabhängiger Forscher. Er besitzt langjährige Berufserfahrung in den Bereichen Big Data und Machine Learning und hat das Talent, komplizierte Dinge in einfacher Sprache und mit anschaulichen Beispielen zu erklären. Derzeit beschäftigt er sich insbesondere mit praktischen Anwendungen des Deep Learnings wie der Verarbeitung natürlicher Sprache und Deep Reinforcement Learning.