Dieser Online-Shop verwendet Cookies für ein optimales Einkaufserlebnis. Dabei werden beispielsweise die Session-Informationen oder die Spracheinstellung auf Ihrem Rechner gespeichert. Ohne Cookies ist der Funktionsumfang des Online-Shops eingeschränkt. Sind Sie damit nicht einverstanden, klicken Sie bitte hier.

Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-Learn

ISBN: 9783747502136

von Sebastian Raschka und Vahid Mirjalili
3. Auflage 2021
744 Seiten

Erscheint im April 2021

Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics

  • Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
  • Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, scikit-learn, TensorFlow 2, Matplotlib, Pandas und Keras
  • Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen


Python ist eine der führenden Programmiersprachen in den Bereichen Machine Learning, Data Science und Deep Learning und ist besonders gut geeignet für das Programmieren von Vorhersagesystemen, Spamfiltern von E-Mail-Programmen, Empfehlungssystemen in Onlineshops Anwendungen zur Bilderkennung und vieles mehr.

Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.

Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.

Ein sicherer Umgang mit Python wird vorausgesetzt.


Aus dem Inhalt:

  • Trainieren von Lernalgorithmen und Implementierung in Python
  • Natural Language Processing zur Klassifizierung von Filmbewertungen
  • Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
  • Deep-Learning-Verfahren für die Bilderkennung
  • Optimale Organisation Ihrer Daten durch effektive Verfahren zur Vorverarbeitung
  • Datenkomprimierung durch Dimensionsreduktion
  • Training Neuronaler Netze und GANs mit TensorFlow 2
  • Kombination verschiedener Modelle für das Ensemble Learning
  • Einbettung von Machine-Learning-Modellen in Webanwendungen
  • Stimmungsanalyse in Social Networks
  • Modellierung sequenzieller Daten durch rekurrente Neuronale Netze
  • Reinforcement Learning und Implementierung von Q-Learning-Algorithmen

Über die Autoren:

Sebastian Raschka ist Assistant Professor für Statistik an der University of Wisconsin-Madison, wo er an der Entwicklung neuer Deep-Learning-Architekturen im Gebiet der Biometrie forscht. Er leitete verschiedene Seminare u.a. auf der SciPy-Konferenz.

Vahid Mirjalili erforschte mehrere Jahre an der Michigan State University Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten. Heute ist er in der Forschung des Unternehmens 3M tätig, wo er moderne Machine-Learning- und Deep-Learning-Verfahren in der Praxis anwendet.