Hacking Der umfassende Praxis-Guide

Inkl. Prüfungsvorbereitung zum CEHv12

	Einleit	ung	29
	Danks	agung	36
Teil I	Grund	lagen und Arbeitsumgebung	37
1		lagen Hacking und Penetration Testing	39
1.1		t Hacking?	40
1.2		rschiedenen Hacker-Typen	4
1.3		und Absichten eines Hackers	43
1.5	1.3.1	Das Motiv.	43
	1.3.1	Ziel des Angriffs	4.
1.4		Hacking	4!
1.5		ertified Ethical Hacker (CEHv12)	46
1.5	1.5.1	Was steckt dahinter?	47
1.6	1.5.2	Die CEHv12-Prüfung im Detail	48
1.6		hutzziele: Was wird angegriffen?	49
	1.6.1	Vertraulichkeit	49
	1.6.2	Integrität	5
	1.6.3	Verfügbarkeit.	53
	1.6.4	Authentizität und Nicht-Abstreitbarkeit	54
	1.6.5	Die Quadratur des Kreises	54
1.7	•	natischer Ablauf eines Hacking-Angriffs	56
	1.7.1	Phasen eines echten Angriffs	56
	1.7.2	Unterschied zum Penetration Testing	58
1.8	Praktis	sche Hacking-Beispiele	60
	1.8.1	Angriff auf den Deutschen Bundestag	60
	1.8.2	Stuxnet – der genialste Wurm aller Zeiten	6
	1.8.3	Angriff auf heise.de mittels Emotet	6
1.9	Zusam	nmenfassung und Prüfungstipps	62
	1.9.1	Zusammenfassung und Weiterführendes	62
	1.9.2	CEH-Prüfungstipps	62
	1.9.3	Fragen zur CEH-Prüfungsvorbereitung	63
2		beitsumgebung einrichten	6
2.1	Virtual	lisierungssoftware	66
	2.1.1	Software-Alternativen	67
	2.1.2	Bereitstellung von VirtualBox	68
2.2	Die La	borumgebung in der Übersicht	70

2.3	Kali Li	nux	71
	2.3.1	Einführung	71
	2.3.2	Download von Kali Linux als ISO-Image	72
	2.3.3	Kali Linux als VirtualBox-Installation	73
	2.3.4	Kali Linux optimieren	77
2.4	Windo	ws 10 als Hacking-Plattform	81
	2.4.1	Download von Windows 10	81
	2.4.2	Windows-10-Installation in VirtualBox	82
	2.4.3	Windows 10 – Spyware inklusive	82
	2.4.4	Gasterweiterungen installieren	83
2.5	Übung	gsumgebung und Zielscheiben einrichten	84
	2.5.1	Metasploitable	85
	2.5.2	Die Netzwerkumgebung in VirtualBox anpassen	87
	2.5.3	Multifunktionsserver unter Linux	90
	2.5.4	Windows XP und ältere Windows-Betriebssysteme	90
	2.5.5	Eine Windows-Netzwerkumgebung aufbauen	91
2.6	Zusam	nmenfassung und Weiterführendes	91
3		rrung in Kali Linux	93
3.1	Ein ers	ster Rundgang	93
	3.1.1	Überblick über den Desktop	94
	3.1.2	Das Startmenü	97
	3.1.3	Der Dateimanager	99
	3.1.4	Systemeinstellungen und -Tools	101
3.2	Works	hop: Die wichtigsten Linux-Befehle	102
	3.2.1	Orientierung und Benutzerwechsel	103
	3.2.2	Von Skripts und Dateiberechtigungen	105
	3.2.3	Arbeiten mit Root-Rechten	107
	3.2.4	Das Dateisystem und die Pfade	110
	3.2.5	Dateien und Verzeichnisse erstellen, kopieren, löschen etc	111
	3.2.6	Dateien anzeigen	112
	3.2.7	Dateien finden und durchsuchen	114
	3.2.8	Die Man-Pages: Hilfe zur Selbsthilfe	116
	3.2.9	Dienste starten und überprüfen	117
3.3	Die Ne	etzwerk-Konfiguration anzeigen und anpassen	119
	3.3.1	IP-Adresse anzeigen	119
	3.3.2	Routing-Tabelle anzeigen	120
	3.3.3	DNS-Server anzeigen	120
	3.3.4	Konfiguration der Schnittstellen	121
3.4	Softwa	re-Installation und -Update	123
	3.4.1	Die Paketlisten aktualisieren	123
	3.4.2	Installation von Software-Paketen	124
	3.4.3	Software suchen	124
	3.4.4	Entfernen von Software-Paketen	125
3.5	Zusam	nmenfassung und Prüfungstipps	126

	3.5.1	Zusammenfassung und Weiterführendes	126
	3.5.2	CEH-Prüfungstipps	126
	3.5.3	Fragen zur CEH-Prüfungsvorbereitung	126
4	•	m bleiben und sicher kommunizieren	129
4.1		rotkrumen und Leuchtspuren	129
4.2	Proxy-	Server – schon mal ein Anfang	131
	4.2.1	Grundlagen – so arbeiten Proxys.	131
	4.2.2	Einen Proxy-Server nutzen	132
	4.2.3	Öffentliche Proxys in der Praxis	134
	4.2.4	Vor- und Nachteile von Proxy-Servern	135
	4.2.5	Proxy-Verwaltung mit FoxyProxy	136
4.3	VPN, S	SSH und Socks – so bleiben Black Hats anonym	137
	4.3.1	Virtual Private Networks (VPN)	137
	4.3.2	SSH-Tunnel	139
	4.3.3	SOCKS-Proxy	141
	4.3.4	Kaskadierung für höchste Anonymität und Vertraulichkeit	145
	4.3.5	Proxifier – Für unwillige Programme	146
4.4	Deep V	Web und Darknet – im Untergrund unterwegs	146
	4.4.1	Wo geht es bitte zum Untergrund?	146
	4.4.2	Das Tor-Netzwerk	147
	4.4.3	Das Freenet Project	153
	4.4.4	Die Linux-Distribution Tails	154
4.5	Anony	m mobil unterwegs	156
	4.5.1	Mobile Proxy-Tools und Anonymizer	156
4.6	Sonsti	ge Sicherheitsmaßnahmen	157
	4.6.1	System säubern mit dem CCleaner	158
	4.6.2	G-Zapper: Cookies unter Kontrolle	159
4.7	Zusan	nmenfassung und Prüfungstipps	159
	4.7.1	Zusammenfassung und Weiterführendes	159
	4.7.2	CEH-Prüfungstipps	160
	4.7.3	Fragen zur CEH-Prüfungsvorbereitung	161
5		ografie und ihre Schwachstellen	163
5.1	Einfüh	nrung in die Krypto-Algorithmen	164
	5.1.1	Alice und Bob und Mallory	164
	5.1.2	Algorithmen und Schlüssel	165
	5.1.3	Das CrypTool – Kryptografie praktisch erfahren	166
5.2	Die sy	mmetrische Verschlüsselung	167
	5.2.1	Grundlagen der symmetrischen Verfahren	167
	5.2.2	Verschlüsselung im alten Rom: Die Cäsar-Chiffre	168
	5.2.3	Strom- und Blockchiffre	168
	5.2.4	Vor- und Nachteile von symmetrischen Algorithmen	169
	5.2.5	Wichtige symmetrische Algorithmen	169
	5.2.6	Symmetrische Verschlüsselung in der Praxis	172

5.3	Die asy	mmetrische Verschlüsselung	175
	5.3.1	Wo liegt das Problem?	175
	5.3.2	Der private und der öffentliche Schlüssel	176
	5.3.3	Der Schlüsselaustausch	176
	5.3.4	Authentizitätsprüfung	178
	5.3.5	Wichtige asymmetrische Algorithmen	179
5.4	Hash-A	Algorithmen	181
	5.4.1	Ein digitaler Fingerabdruck	181
	5.4.2	Integritätsprüfung mit Hashwerten	182
	5.4.3	Wichtige Hash-Algorithmen	185
5.5	Digitale	e Signaturen	187
	5.5.1	Das Prinzip der digitalen Signatur	187
	5.5.2	Wichtige Verfahren der digitalen Signatur	189
5.6	Public-	Key-Infrastrukturen (PKI)	189
	5.6.1	Das Prinzip von PKI	190
	5.6.2	Digitale Zertifikate	190
	5.6.3	Zertifikate und PKI in der Praxis	191
	5.6.4	Zertifikatssperrlisten und OCSP	195
5.7	Virtual	Private Networks (VPN)	197
	5.7.1	IPsec-VPNs	198
	5.7.2	SSL-VPNs	199
5.8	Angriff	fe auf kryptografische Systeme	201
	5.8.1	Methodologie der Kryptoanalyse	201
	5.8.2	Der Heartbleed-Angriff	203
	5.8.3	Des Poodles Kern – der Poodle-Angriff	205
5.9	Kryptot	trojaner und Ransomware	206
	5.9.1	WannaCry	206
	5.9.2	Petya	207
	5.9.3	Locky	208
	5.9.4	Schutz- und Gegenmaßnahmen	208
5.10	Zusam	menfassung und Prüfungstipps	209
	5.10.1	Zusammenfassung und Weiterführendes	209
	5.10.2	CEH-Prüfungstipps	209
	5.10.3	Fragen zur CEH-Prüfungsvorbereitung.	209
Teil II	I£	ation shooth office a	212
Tell II	morm	ationsbeschaffung	213
6	Inform	nationsbeschaffung – Footprinting & Reconnaissance	217
6.1		l hacken, wozu die langweilige Informationssuche?	218
	6.1.1	Worum geht es bei der Informationsbeschaffung?	219
	6.1.2	Welche Informationen sind relevant?	219
6.2		aschinen und Informationsportale nutzen	221
	6.2.1	Reguläre Suchmaschinen	221
	6.2.2		

	6.2.3	WayBack Machine – das Internet-Archiv	223
	6.2.4	Shodan	224
	6.2.5	Map-Anbieter: Mal von oben betrachtet	225
	6.2.6	Personen-Suchmaschinen	226
	6.2.7	Jobsuchmaschinen als Informationsquelle	226
	6.2.8	Arbeitgeber-Bewertungsportale	227
6.3	Google	e-Hacking	227
	6.3.1	Was steckt dahinter?	227
	6.3.2	Wichtige Suchoperatoren	228
	6.3.3	Die Google Hacking Database (GHDB)	228
6.4	Social-	Media-Footprinting	229
	6.4.1	Wo suchen wir?	230
	6.4.2	Was suchen wir?	230
	6.4.3	Wie suchen wir?	230
6.5	Techni	ische Analysen	231
	6.5.1	Whois	231
	6.5.2	DNS – Das Domain Name System	233
	6.5.3	E-Mail-Footprinting	237
	6.5.4	Website-Footprinting	239
	6.5.5	Dokumente analysieren mit Metagoofil	240
6.6	Recon-	-ng – das Web-Reconnaissance-Framework	241
	6.6.1	Die ersten Schritte mit Recon-ng	241
	6.6.2	Ein Modul installieren und laden	243
	6.6.3	Wie geht es weiter?	245
6.7	Malteg	go – Zusammenhänge visualisieren	245
	6.7.1	Einführung in Maltego	245
	6.7.2	Maltego starten	246
	6.7.3	Mit Maltego arbeiten	247
	6.7.4	Der Transform Hub	250
6.8	Gegen	ımaßnahmen gegen Footprinting	250
6.9	Zusam	nmenfassung und Prüfungstipps	251
	6.9.1	Zusammenfassung und Weiterführendes	251
	6.9.2	CEH-Prüfungstipps	252
	6.9.3	Fragen zur CEH-Prüfungsvorbereitung	252
7	Scanni	ing – das Netzwerk unter der Lupe	255
7.1	Scanni	ing – Überblick und Methoden	255
	7.1.1	Die Scanning-Phase	256
	7.1.2	Ziel des Scanning-Prozesses	256
	7.1.3	Scanning-Methoden	256
7.2	TCP/I	P-Essentials	257
	7.2.1	Das OSI-Netzwerk-Referenzmodell.	257
	7.2.2	ARP, Switch & Co. – Layer-2-Technologien	259
	7.2.3	Das Internet Protocol (IPv4)	259
	7.2.4	Das Internet Control Message Protocol (ICMP)	260

	7.2.5	Das User Datagram Protocol (UDP)	261
	7.2.6	Das Transmission Control Protocol (TCP)	262
7.3	Nmap	– DER Portscanner	263
	7.3.1	Host Discovery	264
	7.3.2	Normale Portscans	267
	7.3.3	Zu scannende Ports festlegen	269
	7.3.4	Besondere Portscans	270
	7.3.5	Dienst- und Versionserkennung	272
	7.3.6	Betriebssystem-Erkennung	273
	7.3.7	Firewall/IDS-Vermeidung (Evasion)	273
	7.3.8	Ausgabe-Optionen	274
	7.3.9	Die Nmap Scripting Engine (NSE)	275
	7.3.10	Weitere wichtige Optionen	276
	7.3.11	Zenmap	277
7.4	Scanne	en mit Metasploit	278
	7.4.1	Was ist Metasploit?	278
	7.4.2	Erste Schritte mit Metasploit (MSF)	278
	7.4.3	Nmap in Metasploit nutzen	282
7.5	Weiter	e Tools und Verfahren	284
	7.5.1	Paketerstellung und Scanning mit hping3	284
	7.5.2	Weitere Packet-Crafting-Tools	286
	7.5.3	Banner Grabbing mit Telnet und Netcat	286
	7.5.4	Scannen von IPv6-Netzwerken	288
7.6	Gegen	maßnahmen gegen Portscanning und Banner Grabbing	289
7.7	Zusam	nmenfassung und Prüfungstipps	290
	7.7.1	Zusammenfassung und Weiterführendes	290
	7.7.2	CEH-Prüfungstipps	290
	7.7.3	Fragen zur CEH-Prüfungsvorbereitung	291
8	Enume	eration – welche Ressourcen sind verfügbar?	295
8.1		ollen wir mit Enumeration erreichen?	295
8.2	NetBIO	OS- und SMB-Enumeration	296
	8.2.1	Die Protokolle NetBIOS und SMB	296
	8.2.2	Der Enumeration-Prozess	298
8.3	SNMP	-Enumeration	303
	8.3.1	SNMP-Grundlagen	304
	8.3.2	SNMP-Agents identifizieren	306
	8.3.3	Enumeration-Tools nutzen	307
8.4	LDAP-	Enumeration	312
	8.4.1	LDAP- und AD-Grundlagen	312
	8.4.2	Der Enumeration-Prozess	314
8.5	SMTP-	Enumeration	316
	8.5.1	SMTP-Grundlagen	316
	8.5.2	Der Enumeration-Prozess	317
8.6	NTP-E	numeration	320

	8.6.1	Funktionsweise von NTP	320
	8.6.2	Der Enumeration-Prozess	320
8.7	DNS-E	numeration	322
	8.7.1	NFS-Enumeration	327
	8.7.2	Weitere Enumeration-Techniken	328
8.8	Schutz	maßnahmen gegen Enumeration	328
8.9	Zusam	menfassung und Prüfungstipps	331
	8.9.1	Zusammenfassung und Weiterführendes	331
	8.9.2	CEH-Prüfungstipps	331
	8.9.3	Fragen zur CEH-Prüfungsvorbereitung	332
9	Vulner	ability-Scanning und Schwachstellenanalyse	335
9.1	Was ste	eckt hinter Vulnerability-Scanning?	335
	9.1.1	Vulnerabilities und Exploits	336
	9.1.2	Common Vulnerabilities and Exposures (CVE)	336
	9.1.3	CVE- und Exploit-Datenbanken	338
	9.1.4	Vulnerability-Scanner	339
9.2	Vulner	ability-Scanning mit Nmap	341
	9.2.1	Die Kategorie »vuln«	341
	9.2.2	Die passenden Skripts einsetzen	341
9.3	Nessus		344
	9.3.1	Installation von Nessus	344
	9.3.2	Vulnerability-Scanning mit Nessus	345
	9.3.3	Nessus versus OpenVAS	349
9.4	Rapid 7	7 Nexpose	350
9.5	Vulner	ability-Scanning in der Praxis	351
	9.5.1	Vulnerability-Assessments	351
	9.5.2	Einsatz von Vulnerability-Scannern im Ethical Hacking	352
	9.5.3	Credentialed Scan vs. Remote Scan	353
	9.5.4	Verifizieren der Schwachstelle	354
	9.5.5	Exploits zum Testen von Schwachstellen	354
	9.5.6	Spezialisierte Scanner	355
9.6	Zusam	menfassung und Prüfungstipps	355
	9.6.1	Zusammenfassung und Weiterführendes	355
	9.6.2	CEH-Prüfungstipps	356
	9.6.3	Fragen zur CEH-Prüfungsvorbereitung	356
T.31.00	Conto	······································	250
Teil III	System	ne angreifen	359
10		ord Hacking	365
10.1	_	Sschutz mit Passwörtern und anderen Methoden	365
10.2	Angriff	Svektoren auf Passwörter	367
	10.2.1	Nicht elektronische Angriffe	367
	10.2.2	Aktive Online-Angriffe	367

	10.2.3	Passive Online-Angriffe	368
	10.2.4	Offline-Angriffe	368
10.3	Passwo	rd Guessing und Password Recovery	368
	10.3.1	Grundlagen des Password Guessings	369
	10.3.2	Default-Passwörter	370
	10.3.3	Password Recovery unter Windows	372
	10.3.4	Password Recovery für Linux	378
	10.3.5	Password Recovery auf Cisco-Routern	379
10.4	Die Wi	ndows-Authentifizierung	381
	10.4.1	Die SAM-Datenbank	381
	10.4.2	LM und NTLM	381
	10.4.3	Kerberos	382
	10.4.4	NTLM-Hashes auslesen mit FGdump	386
10.5	Die Lin	ux-Authentifizierung	388
	10.5.1	Speicherorte der Login-Daten	388
	10.5.2	Passwort-Hashes unter Linux	389
	10.5.3	Der Salt – Passwort-Hashes »salzen«	390
	10.5.4	Wie gelangen wir an die Passwort-Hashes?	391
10.6	Passwo	rt-Hashes angreifen	392
	10.6.1	Angriffsvektoren auf Passwort-Hashes	392
	10.6.2	Pass the Hash (PTH)	396
	10.6.3	Wortlisten erstellen	397
	10.6.4	L0phtcrack	402
	10.6.5	John the Ripper	404
	10.6.6	Hashcat	406
	10.6.7	Cain & Abel	406
10.7	Online-	Angriffe auf Passwörter	407
	10.7.1	Grundlegende Problematik	407
	10.7.2	Medusa	407
	10.7.3	Hydra	409
	10.7.4	Ncrack	410
10.8	Distrib	uted Network Attack (DNA)	412
	10.8.1	Funktionsweise	412
	10.8.2	ElcomSoft Distributed Password Recovery	413
10.9		maßnahmen gegen Password Hacking	413
10.10		menfassung und Prüfungstipps	415
	10.10.1	Zusammenfassung und Weiterführendes	415
	10.10.2	CEH-Prüfungstipps	415
	10.10.3	Fragen zur CEH-Prüfungsvorbereitung	416
11	Shells ı	ınd Post-Exploitation	417
11.1	Remote	e-Zugriff mit Shell und Backdoor	417
	11.1.1	Einführung in Shells und Backdoors	418
	11.1.2	Netcat und Ncat – Einführung	420
	11.1.3	Grundlegende Funktionsweise von Netcat und Ncat	421

	11.1.4	Eine Bind-Shell bereitstellen	424
	11.1.5	Eine Reverse-Shell bereitstellen	426
	11.1.6	Wo stehen wir jetzt?	427
11.2	Grund		427
	11.2.1	Vertikale Rechteerweiterung	428
	11.2.2	Horizontale Rechteerweiterung	428
	11.2.3		428
11.3	Mit Pri		429
	11.3.1		429
	11.3.2	Bereitstellung eines Post-Exploits	430
	11.3.3		434
11.4	Meterp	oreter – die Luxus-Shell für Hacker	435
	11.4.1	Exploits und Payload	435
	11.4.2	-	436
	11.4.3	· · · · · · · · · · · · · · · · · · ·	438
	11.4.4	-	440
	11.4.5		443
11.5	Privile		444
	11.5.1		445
	11.5.2	Ermittlung des Domain-Controllers	445
	11.5.3	· · · · · · · · · · · · · · · · · · ·	446
11.6	Verteid	ligungsmaßnahmen gegen Privilegien-Eskalation	447
11.7			448
	11.7.1		448
	11.7.2	CEH-Prüfungstipps	449
	11.7.3	Fragen zur CEH-Prüfungsvorbereitung	449
12	Mit Ma	ılware das System übernehmen	451
12.1		·	452
	12.1.1		452
	12.1.2	· -	455
	12.1.3		456
12.2	Viren ı		457
	12.2.1	Was ist ein Computervirus?	457
	12.2.2	Was ist ein Computerwurm?	459
	12.2.3	Einen Makro-Virus erstellen	460
12.3	Trojani	ische Pferde in der Praxis	465
	12.3.1	Trojaner-Typen	465
	12.3.2	Einen Trojaner selbst bauen	467
	12.3.3	Viren- und Trojaner-Baukästen	470
12.4	Malwa	re tarnen und vor Entdeckung schützen	472
	12.4.1		473
	12.4.2	Encoder einsetzen	475
	12.4.3		478
	12.4.4	Das Veil-Framework	479

	12.4.5	Shellter AV Evasion	480
	12.4.6	Fileless Malware	481
12.5	Rootkit	s	482
	12.5.1	Grundlagen der Rootkits	483
	12.5.2	Kernel-Rootkits	484
	12.5.3	Userland-Rootkits	484
	12.5.4	Rootkit-Beispiele	484
	12.5.5	Rootkits entdecken und entfernen	485
12.6	Covert	Channel	486
	12.6.1	ICMP-Tunneling	486
	12.6.2	NTFS Alternate Data Stream (ADS)	489
12.7	Keylogg	ger und Spyware	491
	12.7.1	Grundlagen	492
	12.7.2	Keylogger und Spyware in der Praxis	492
12.8	Advanc	ed Persistent Threat (APT)	497
	12.8.1	Wie funktioniert ein APT?	497
	12.8.2	Ablauf eines APT-Angriffs	498
	12.8.3	Zielgruppen von APT-Angriffen	498
12.9	Schutzı	maßnahmen gegen Malware	499
12.10		menfassung und Prüfungstipps	499
	12.10.1	Zusammenfassung und Weiterführendes	499
	12.10.2	CEH-Prüfungstipps	500
	12.10.3	Fragen zur CEH-Prüfungsvorbereitung	500
13	Malwar	e-Erkennung und -Analyse	503
13.1	Grundl	agen der Malware-Analyse	503
	13.1.1	Statische Malware-Analyse	504
	13.1.2	Dynamische Malware-Analyse	507
13.2	Verdäcl	htiges Verhalten analysieren	507
	13.2.1	Virencheck durchführen	508
	13.2.2	Prozesse überprüfen	512
	13.2.3	Netzwerkaktivitäten prüfen	515
	13.2.4	Die Windows-Registrierung checken	520
	13.2.5	Autostart-Einträge unter Kontrolle	524
	13.2.6	Windows-Dienste checken	526
	13.2.7	Treiber überprüfen	528
	13.2.8	Integrität der Systemdateien prüfen	530
	13.2.9	Datei-Integrität durch Prüfsummen-Check	531
	13.2.10	System-Integrität mit Tripwire sichern	532
13.3	Sheep-I	Dip-Systeme	533
	13.3.1	Einführung	533
	13.3.2	Aufbau eines Sheep-Dip-Systems	534
13.4	Schutz	durch Sandbox	535
	13.4.1	Sandboxie	535
	13.4.2	Cuckoo	537

13.5	Allgem	eine Schutzmaßnahmen vor Malware-Infektion	538
13.6	Zusam	menfassung und Prüfungstipps	539
	13.6.1	Zusammenfassung und Weiterführendes	539
	13.6.2	CEH-Prüfungsgstipps	540
	13.6.3	Fragen zur CEH-Prüfungsvorbereitung	540
14	Stegan	ografie	543
14.1	Grundl	lagen der Steganografie	543
	14.1.1	Wozu Steganografie?	543
	14.1.2	Ein paar einfache Beispiele	544
	14.1.3	Klassifikation der Steganografie	545
14.2	Compu	ıtergestützte Steganografie	549
	14.2.1	Daten in Bildern verstecken	549
	14.2.2	Daten in Dokumenten verstecken	554
	14.2.3	Weitere Cover-Datenformate	555
14.3	Stegan	alyse und Schutz vor Steganografie	556
	14.3.1	Methoden der Steganalyse	556
	14.3.2	Steganalyse-Tools	557
	14.3.3	Schutz vor Steganografie	557
14.4	Zusam	menfassung und Prüfungstipps	558
	14.4.1	Zusammenfassung und Weiterführendes	558
	14.4.2	CEH-Prüfungstipps	559
	14.4.3	Fragen zur CEH-Prüfungsvorbereitung	559
15	Spuren	ı verwischen	561
15.1	Auditir	ng und Logging	561
	15.1.1	Die Windows-Protokollierung	562
	15.1.2	Die klassische Linux-Protokollierung	564
15.2	Spuren	verwischen auf einem Windows-System	567
	15.2.1	Das Windows-Auditing deaktivieren	567
	15.2.2	Windows-Ereignisprotokolle löschen	569
	15.2.3	Most Recently Used (MRU) löschen	571
	15.2.4	Zeitstempel manipulieren	573
	15.2.5	Clearing-Tools	576
15.3	Spuren	verwischen auf einem Linux-System	578
	15.3.1	Logfiles manipulieren und löschen	578
	15.3.2	Systemd-Logging in Journald	580
	15.3.3	Zeitstempel manipulieren	581
	15.3.4	Die Befehlszeilen-Historie löschen	583
15.4	Schutz	vor dem Spuren-Verwischen	584
15.5	Zusam	menfassung und Prüfungstipps	585
	15.5.1	Zusammenfassung und Weiterführendes	585
	15.5.2	CEH-Prüfungstipps	586
	15.5.3	Fragen zur CEH-Prüfungsvorbereitung	587

Teil IV	Netzw	erk- und sonstige Angriffe	589		
16	Networ	k Sniffing mit Wireshark & Co	593		
16.1	Grundlagen von Netzwerk-Sniffern				
	16.1.1	Technik der Netzwerk-Sniffer	593		
	16.1.2	Wireshark und die Pcap-Bibliotheken	595		
16.2	Wiresh	ark installieren und starten	595		
	16.2.1	Installation unter Linux	595		
	16.2.2	Installation unter Windows	596		
	16.2.3	Der erste Start	597		
16.3	Die ers	ten Schritte mit Wireshark	598		
	16.3.1	Grundeinstellungen	598		
	16.3.2	Ein erster Mitschnitt	600		
16.4	Mitsch	nitt-Filter einsetzen	601		
	16.4.1	Analyse eines TCP-Handshakes	602		
	16.4.2	Der Ping in Wireshark	603		
	16.4.3	Weitere Mitschnittfilter	604		
16.5	Anzeig	efilter einsetzen	605		
	16.5.1	Eine HTTP-Sitzung im Detail	606		
	16.5.2	Weitere Anzeigefilter	608		
16.6	Passwö	rter und andere Daten ausspähen	609		
	16.6.1	FTP-Zugangsdaten ermitteln	610		
	16.6.2	Telnet-Zugangsdaten identifizieren	611		
	16.6.3	SSH – sicherer Schutz gegen Mitlesen	613		
	16.6.4	Andere Daten ausspähen	615		
16.7	Auswei	rtungsfunktionen von Wireshark nutzen	616		
16.8	Tcpdur	np und TShark einsetzen	618		
	16.8.1	Tcpdump – der Standard-Sniffer für die Konsole	618		
	16.8.2	TShark – Wireshark auf der Konsole	621		
16.9	Zusam	menfassung und Prüfungstipps	623		
	16.9.1	Zusammenfassung und Weiterführendes	623		
	16.9.2	CEH-Prüfungstipps	623		
	16.9.3	Fragen zur CEH-Prüfungsvorbereitung	624		
17		angriffe & Man-in-the-Middle	627		
17.1	Eavesd	ropping und Sniffing für Hacker	627		
	17.1.1	Eavesdropping und Wiretapping	628		
	17.1.2	Sniffing als Angriffsvektor	628		
17.2	Man-in	-the-Middle (MITM)	629		
	17.2.1	Was bedeutet Man-in-the-Middle?	630		
	17.2.2	Was erreichen wir durch einen MITM-Angriff?	631		
17.3	Active S	Sniffing	631		
	17.3.1	Mirror-Ports: Ein Kabel mit drei Enden	632		
	17.3.2	Aus Switch mach Hub – MAC-Flooding	632		
	17.3.3	Auf dem Silbertablett: WLAN-Sniffing	634		

	17.3.4	Weitere physische Abhörmöglichkeiten	635
17.4	Die Ko	mmunikation für MITM umleiten	635
	17.4.1	Physische Umleitung	635
	17.4.2	Umleitung über aktive Netzwerk-Komponenten	636
	17.4.3	Umleiten mit ARP-Spoofing	637
	17.4.4	ICMP-Typ 5 Redirect	637
	17.4.5	DNS-Spoofing oder DNS-Cache-Poisoning	638
	17.4.6	Manipulation der hosts-Datei	640
	17.4.7	Umleiten via DHCP-Spoofing	641
17.5	Die Dsı	niff-Toolsammlung	642
	17.5.1	Programme der Dsniff-Suite	642
	17.5.2	Abhören des Netzwerk-Traffics	643
	17.5.3	MITM mit arpspoof	644
	17.5.4	Die ARP-Tabelle des Switches mit macof überfluten	647
	17.5.5	DNS-Spoofing mit dnspoof	647
	17.5.6	Dsniff	650
17.6	Man-in	-the-Middle-Angriffe mit Ettercap	651
	17.6.1	Einführung in Ettercap	651
	17.6.2	DNS-Spoofing mit Ettercap	653
17.7	Schutz	vor Lauschangriffen & MITM	661
17.8		menfassung und Prüfungstipps	663
	17.8.1	Zusammenfassung und Weiterführendes	663
	17.8.2	CEH-Prüfungstipps	664
	17.8.3	Fragen zur CEH-Prüfungsvorbereitung	664
18	Session	ı Hijacking	667
18.1		agen des Session Hijackings	667
	18.1.1	Wie funktioniert Session Hijacking grundsätzlich?	668
	18.1.2	Session-Hijacking-Varianten	668
18.2	Networ	k Level Session Hijacking	669
	18.2.1	Die TCP-Session im Detail	670
	18.2.2	Entführen von TCP-Sessions	672
	18.2.3	Weitere Hijacking-Varianten auf Netzwerk-Ebene	674
18.3	Applica	tion Level Session Hijacking	675
	18.3.1	Die Session-IDs	676
	18.3.2	Die Session-ID ermitteln	677
	18.3.3	Sniffing/Man-in-the-Middle	677
	18.3.4	Die Session-ID erraten – das Prinzip	678
	18.3.5	WebGoat bereitstellen	678
	18.3.6	Die Burp Suite – Grundlagen und Installation	681
	18.3.7	Burp Suite als Intercepting Proxy	683
	18.3.8	Der Burp Sequencer – Session-IDs analysieren	686
	18.3.9	Entführen der Session mithilfe der Session-ID	690
	18.3.10	Man-in-the-Browser-Angriff	696

	18.3.11	Weitere Angriffsformen	698
18.4	Gegenr	maßnahmen gegen Session Hijacking	700
	18.4.1	Session Hijacking entdecken	700
	18.4.2	Schutzmaßnahmen	701
18.5	Zusam	menfassung und Prüfungstipps	703
	18.5.1	Zusammenfassung und Weiterführendes	703
	18.5.2	CEH-Prüfungstipps	704
	18.5.3	Fragen zur CEH-Prüfungsvorbereitung	704
19	Firewal	lls, IDS/IPS und Honeypots einsetzen und umgehen	707
19.1	Firewal	ll-Technologien	707
	19.1.1	Netzwerk- und Personal-Firewalls	708
	19.1.2	Filtertechniken und Kategorisierung der Netzwerk-Firewalls	709
19.2	Firewal	ll-Szenarien	713
	19.2.1	DMZ-Szenarien	713
	19.2.2	Failover-Szenarien	715
19.3	Firewal	lls umgehen	716
	19.3.1	Identifikation von Firewalls	716
	19.3.2	IP-Adress-Spoofing	717
	19.3.3	Was wirklich funktioniert	718
19.4	Intrusio	on-Detection- und -Prevention-Systeme	719
	19.4.1	Grundlagen und Unterschiede zwischen IDS und IPS	719
	19.4.2	Einführung in Snort	722
19.5	Intrusio	on-Detection-Systeme umgehen	726
	19.5.1	Injection/Insertion	726
	19.5.2	Evasion	727
	19.5.3	Denial-of-Service-Angriff (DoS)	728
	19.5.4	Obfuscation	728
	19.5.5	Generieren von False Positives	728
	19.5.6	Fragmentation	729
	19.5.7	TCP Session Splicing.	730
	19.5.8	Weitere Evasion-Techniken	730
19.6	Networ	k Access Control (NAC)	731
	19.6.1	NAC-Lösungen - Grundlagen	731
	19.6.2	Angriffsvektoren auf NAC-Lösungen	732
19.7	Honeyr	pots	733
	19.7.1	Grundlagen und Begriffsklärung	734
	19.7.2	Kategorisierung der Honeypots	734
	19.7.3	Valhala – ein Honeypot in der Praxis	737
	19.7.4	Honeypots identifizieren und umgehen	740
	19.7.5	Rechtliche Aspekte beim Einsatz von Honeypots	742
19.8	Zusam	menfassung und Prüfungstipps	742
	19.8.1	Zusammenfassung und Weiterführendes	742
	19.8.2	CEH-Prüfungstipps	744
	19.8.3	Fragen zur CEH-Prüfungsvorbereitung	744

20	Social I	Engineering	747
20.1	Einfüh	rung in das Social Engineering	747
	20.1.1	Welche Gefahren birgt Social Engineering?	748
	20.1.2	Verlustangst, Neugier, Eitelkeit – die Schwachstellen des	
		Systems Mensch	748
	20.1.3	Varianten des Social Engineerings	751
	20.1.4	Allgemeine Vorgehensweise beim Social Engineering	753
20.2	Humar	n Based Social Engineering	754
	20.2.1	Vortäuschen einer anderen Identität	754
	20.2.2	Shoulder Surfing & Co	756
	20.2.3	Piggybacking und Tailgaiting	757
20.3	Compu	ıter Based Social Engineering	758
	20.3.1	Phishing	758
	20.3.2	Pharming	758
	20.3.3	Spear Phishing	759
	20.3.4	Drive-by-Downloads	760
	20.3.5	Gefälschte Viren-Warnungen	761
20.4	Das So	cial-Engineer Toolkit (SET)	762
	20.4.1	Einführung in SET	762
	20.4.2	Praxisdemonstration: Credential Harvester	764
	20.4.3	Weitere Angriffe mit SET	767
20.5	So schi	itzen Sie sich gegen Social-Engineering-Angriffe	768
20.6	Zusam	menfassung und Prüfungstipps	770
	20.6.1	Zusammenfassung und Weiterführendes	770
	20.6.2	CEH-Prüfungstipps	771
	20.6.3	Fragen zur CEH-Prüfungsvorbereitung	771
21	Uackin	g-Hardware	773
21.1		eines und rechtliche Hinweise zu Spionage-Hardware	774
21.1	-	svektor USB-Schnittstelle	774
21.2	21.2.1		775
	21.2.1	Hardware Keylogger	776
	21.2.2	USB Rubber Ducky.	779
	21.2.3	Bash Bunny	781
	21.2.4	Digispark	782
	21.2.5	USBNinja	783
21.2		Mouse Jiggler	783
21.3	21.3.1	e Hacking-GadgetsVideoGhost	783
	21.3.1		784
		Packet Squirrel	
	21.3.3	LAN Turtle	785
	21.3.4	Throwing Star LAN Tap	785
	21.3.5	Software Defined Radio	786
	21.3.6	Crazyradio PA	786
	21.3.7	WiFi Pinapple	787

	21.3.8	Proxmark 3	788
	21.3.9	ChameleonMini	788
21.4	Raspbe	rry Pi als Hacking-Kit	788
21.5		maßnahmen	790
21.6	Zusam	menfassung und Prüfungstipps	792
	21.6.1	Zusammenfassung und Weiterführendes	792
	21.6.2	CEH-Prüfungstipps	793
	21.6.3	Fragen zur CEH-Prüfungsvorbereitung	793
22	DoS- u	nd DDoS-Angriffe	795
22.1	DoS- u	nd DDoS-Grundlagen	795
	22.1.1	Was ist ein Denial-of-Service-Angriff?	796
	22.1.2	Warum werden DoS- und DDoS-Angriffe durchgeführt?	796
	22.1.3	Kategorien der DoS/DDoS-Angriffe	797
22.2	DoS- u	nd DDoS-Angriffstechniken	797
	22.2.1	UDP-Flood-Angriff	798
	22.2.2	ICMP-Flood-Angriff.	798
	22.2.3	Smurf-Angriff	799
	22.2.4	Syn-Flood-Angriff	800
	22.2.5	Fragmentation-Angriff	803
	22.2.6	Slowloris-Angriff	804
	22.2.7	Permanenter Denial-of-Service (PDoS)	805
	22.2.8	Distributed-Reflected-Denial-of-Service-Angriff (DRDoS)	806
22.3	Botnetz	ze – Funktionsweise und Betrieb	807
	22.3.1	Bots und deren Einsatzmöglichkeiten	808
	22.3.2	Aufbau eines Botnetzes	808
	22.3.3	Wie gelangen Bots auf die Opfer-Systeme?	810
	22.3.4	Mobile Systeme und IoT	811
	22.3.5	Botnetze in der Praxis	811
	22.3.6	Verteidigung gegen Botnetze und DDoS-Angriffe	812
22.4	DoS-Ar	ngriffe in der Praxis	814
	22.4.1	SYN- und ICMP-Flood-Angriff mit hping3	815
	22.4.2	DoS-Angriff mit Metasploit	817
	22.4.3	DoS-Angriff mit SlowHTTPTest	819
	22.4.4	Low Orbit Ion Cannon (LOIC)	821
22.5	Verteid	igung gegen DoS- und DDoS-Angriffe	822
	22.5.1	Allgemeiner Grundschutz	822
	22.5.2	Schutz vor volumetrischen DDoS-Angriffen	823
22.6	Zusam	menfassung und Prüfungstipps	824
	22.6.1	Zusammenfassung und Weiterführendes	824
	22.6.2	CEH-Prüfungstipps	825
	22.6.3	Fragen zur CEH-Prüfungsvorbereitung	825

Teil V	Web-H	lacking	827		
23	Web-Hacking – Grundlagen				
23.1	Was ist	: Web-Hacking?	831		
23.2		ktur von Webanwendungen	832		
	23.2.1	Die Schichten-Architektur	832		
	23.2.2	Die URL-Codierung	833		
	23.2.3	Das Hypertext Transfer Protocol (HTTP)	834		
	23.2.4	Cookies	837		
	23.2.5	HTTP vs. HTTPS	837		
	23.2.6	Webservices und -technologien	838		
23.3	Die gär	ngigsten Webserver: Apache, IIS, nginx	843		
	23.3.1	Apache HTTP Server	843		
	23.3.2	Internet Information Services (IIS)	845		
	23.3.3	nginx	847		
23.4	Typisch	ne Schwachstellen von Webservern und -anwendungen	848		
	23.4.1	Schwachstellen in Webserver-Plattformen	848		
	23.4.2	Schwachstellen in der Webanwendung	849		
23.5	Reconn	naissance für Web-Hacking-Angriffe	850		
	23.5.1	Footprinting und Scanning	850		
	23.5.2	Web-Firewalls und Proxys entlarven	852		
	23.5.3	Hidden Content Discovery	852		
	23.5.4	Website-Mirroring	855		
	23.5.5	Security-Scanner	855		
23.6	Praxis-	Szenario: Einen Apache-Webserver mit Shellshock hacken	858		
	23.6.1	Die Laborumgebung präparieren	858		
	23.6.2	Den Angriff durchführen	860		
23.7	Praxis-	Szenario 2: Angriff auf WordPress	861		
	23.7.1	WordPress-VM bereitstellen	862		
	23.7.2	WordPress scannen und Enumeration	866		
	23.7.3	User-Hacking	868		
23.8	Zusam	menfassung und Prüfungstipps	868		
	23.8.1	Zusammenfassung und Weiterführendes	868		
	23.8.2	CEH-Prüfungstipps	869		
	23.8.3	Fragen zur CEH-Prüfungsvorbereitung	869		
24	Web-H	acking – OWASP Top 10	871		
24.1		rung in die OWASP-Projekte	871		
	24.1.1	OWASP Juice Shop	872		
	24.1.2	OWASP ModSecurity Core Rule Set (CRS)	873		
	24.1.3	OWASP Web Security Testing Guide	873		
	24.1.4	OWASP Top 10	873		
24.2	WebGo	oat & Co – virtuelle Sandsäcke für das Web-Hacking-Training	874		
	24.2.1	WebGoat	875		
	24.2.2	Mutillidae II	875		

	24.2.3	bWAPP	876
	24.2.4	DVWA	877
	24.2.5	Web Security Dojo	878
	24.2.6	Vulnhub und Pentesterlab	879
24.3	Die OW	/ASP Top 10 in der Übersicht	879
24.4	A01 – B	Broken Access Control	880
	24.4.1	Unsichere direkte Objektreferenzen	880
	24.4.2	Fehlerhafte Autorisierung auf Anwendungsebene	882
	24.4.3	Schutzmaßnahmen	885
24.5	A02 – C	Cryptographic Failures	886
	24.5.1	Welche Daten sind betroffen?	886
	24.5.2	Angriffsszenarien	887
	24.5.3	Schutzmaßnahmen	888
24.6	A03 – I	njection	889
	24.6.1	Kategorien von Injection-Angriffen	889
	24.6.2	Beispiel für einen Injection-Angriff	889
	24.6.3	Cross-Site-Scripting (XSS)	892
	24.6.4	Wie funktioniert XSS?	892
	24.6.5	Ein einfaches XSS-Beispiel	893
	24.6.6	XSS-Varianten	895
	24.6.7	Ein Beispiel für Stored XSS	897
	24.6.8	Exkurs: Cross-Site-Request-Forgery (CSRF)	898
	24.6.9	Schutzmaßnahmen gegen XSS-Angriffe	900
24.7	A04 – I	nsecure Design	901
	24.7.1	Was bedeutet unsicheres Design?	901
	24.7.2	Sichere Webentwicklung	902
	24.7.3	Schutzmaßnahmen	902
24.8	A05 – S	ecurity Misconfiguration	903
	24.8.1	Typische Fehlkonfigurationen	903
	24.8.2	Directory Browsing	903
	24.8.3	Allgemeine Schutzmaßnahmen	905
	24.8.4	A4 – XML External Entities (XXE)	906
	24.8.5	XML-Entities	906
	24.8.6	Ein Beispiel für einen XXE-Angriff	907
	24.8.7	Schutzmaßnahmen	908
24.9	A06 – V	/ulnerable and Outdated Components	909
	24.9.1	Worin liegt die Gefahr und wer ist gefährdet?	909
	24.9.2	Verwundbare JavaScript-Bibliotheken aufdecken mit Retire.js	909
	24.9.3	Schutzmaßnahmen	910
24.10		dentification and Authentication Failures	911
		Grundlagen	911
	24.10.2	Identitätsdiebstahl durch Token-Manipulation	911
		Schutzmaßnahmen	914
24.11	A08 - S	Software and Data Integrity Failures	914

	24.11.1	Was bedeutet Integritätsverletzung?	915
	24.11.2	Unsichere Deserialisierung	915
	24.11.3	Was bedeutet Serialisierung von Daten?	915
	24.11.4	Wie wird die Deserialisierung zum Problem?	916
		Schutzmaßnahmen	916
24.12		Security Logging and Monitoring Failures	917
	24.12.1	Herausforderungen beim Logging & Monitoring	917
		Sind unserer Systeme gefährdet?	918
24.13		erver-Side Request Forgery (SSRF)	919
		Wie funktioniert SSRF?	919
		Ein SSRF-Beispiel	920
24.14	Zusamı	menfassung und Prüfungstipps	923
		Zusammenfassung und Weiterführendes	923
	24.14.2	CEH-Prüfungstipps	923
		Fragen zur CEH-Prüfungsvorbereitung	924
25	•	jection	925
25.1	Mit SQ	L-Injection das Login austricksen	926
	25.1.1	Der grundlegende Ansatz	926
	25.1.2	Anmeldung als gewünschter Benutzer	930
	25.1.3	Clientseitige Sicherheit.	930
25.2	Daten a	suslesen mit SQL-Injection	932
	25.2.1	Manipulation eines GET-Requests	933
	25.2.2	Informationen über die Datenbank auslesen	934
	25.2.3	Die Datenbank-Tabellen identifizieren	936
	25.2.4	Spalten und Passwörter auslesen	938
25.3		chrittene SQL-Injection-Techniken	939
	25.3.1	Einführung in Blind SQL-Injection.	940
	25.3.2	Codieren des Injection-Strings	942
	25.3.3	Blind SQLi: Eins oder null?	945
	25.3.4	Time based SQL-Injection	946
25.4	SQLMa	p – automatische Schwachstellensuche	948
	25.4.1	SQLi-CheatSheets	948
	25.4.2	Einführung in SQLMap	949
	25.4.3	Weitere Analysen mit SQLMap	954
25.5	Schutzr	maßnahmen vor SQLi-Angriffen	956
25.6	Zusamı	menfassung und Prüfungstipps	957
	25.6.1	Zusammenfassung und Weiterführendes	957
	25.6.2	CEH-Prüfungstipps	957
	25.6.3	Fragen zur CEH-Prüfungsvorbereitung	958
26		acking – sonstige Injection-Angriffe	961
26.1	Comma	and-Injection	961
	26.1.1	Einführung in Command-Injection-Angriffe	962
	26.1.2	Command-Injection in der Praxis	962

	26.1.3	Schutzmaßnahmen vor Command-Injection-Angriffen	964
26.2	File-Inje	ection	965
	26.2.1	Directory-Traversal-Angriffe	965
	26.2.2	File-Upload-Angriffe	967
	26.2.3	Local File Inclusion versus Remote File Inclusion	970
26.3	Zusamı	menfassung und Prüfungstipps	973
	26.3.1	Zusammenfassung und Weiterführendes	973
	26.3.2	CEH-Prüfungstipps	973
	26.3.3	Fragen zur CEH-Prüfungsvorbereitung.	974
27	Buffer-0	Overflow-Angriffe	977
27.1	Wie fur	nktioniert ein Buffer-Overflow-Angriff?	978
	27.1.1	Das Grundprinzip	978
	27.1.2	Welche Anwendungen sind verwundbar?	978
	27.1.3	Funktionsweise des Stacks	979
	27.1.4	Register	980
27.2	Ein Buf	ffer-Overflow-Angriff in der Praxis	981
	27.2.1	SLmail-Exploit	981
	27.2.2	Die Laborumgebung	981
	27.2.3	Der Immunity Debugger	984
	27.2.4	Fuzzing	986
	27.2.5	Einen eindeutigen String erstellen	990
	27.2.6	Den EIP lokalisieren	992
	27.2.7	Den Shellcode platzieren	992
	27.2.8	Bad Characters identifizieren	994
	27.2.9	Grundüberlegung: Wohin soll der EIP zeigen?	996
	27.2.10	Mona und die Module	996
		Die Anweisung JMP ESP auffinden	997
		Den Programmablauf über den EIP steuern	999
		Den Shellcode erstellen und ausführen	1001
27.3	Heap-O	Overflow-Angriffe	1005
	27.3.1	Der Heap	
	27.3.2	Heap Overflow versus Stack Overflow	
	27.3.3	Use-after-free	1006
	27.3.4	Heap Spraying	1006
27.4	Schutzr	maßnahmen gegen Buffer-Overflow-Angriffe	
	27.4.1	Address Space Layout Randomization (ASLR)	
	27.4.2	Data Execution Prevention (DEP)	1008
	27.4.3	SEHOP und SafeSEH	1008
	27.4.4	Stack Canary	1008
	27.4.5	Wie sicher sind die Schutzmaßnahmen?	1009
27.5	Zusamı	menfassung und Prüfungstipps	1010
	27.5.1	Zusammenfassung und Weiterführendes	1010
	27.5.2	CEH-Prüfungstipps	1011
	27.5.3	Fragen zur CEH-Prüfungsvorbereitung	1011

Teil VI	Angriffe	e auf WLAN und Next-Gen-Technologien	1013		
28	WLAN-Hacking				
28.1		Grundlagen	1017		
	28.1.1	Frequenzen und Kanäle	1018		
	28.1.2	Der IEEE-802.11-Standard	1019		
	28.1.3	Infrastruktur	1020		
	28.1.4	Verbindungsaufbau	1023		
	28.1.5	Verschlüsselungsmethoden	1026		
28.2	Setup fi	ür das WLAN-Hacking	1029		
	28.2.1	Die WLAN-Hacking-Plattform	1029		
	28.2.2	Der richtige WLAN-Adapter	1030		
	28.2.3	Den Monitor Mode aktivieren	1031		
28.3	WLAN-	Scanning und -Sniffing	1032		
	28.3.1	Scanning	1033		
	28.3.2	WLAN-Sniffing	1033		
	28.3.3	Hidden SSIDs aufspüren	1035		
28.4	Angriffe	e auf WLAN	1037		
	28.4.1	Denial of Service durch Störsender	1037		
	28.4.2	Deauthentication-Angriff	1037		
	28.4.3	Angriff auf WEP	1039		
	28.4.4	Angriff auf WPA/WPA2	1043		
	28.4.5	Angriff auf WPA3	1045		
	28.4.6	Angriff auf WPS	1046		
	28.4.7	MAC-Filter umgehen	1049		
	28.4.8	WLAN-Passwörter auslesen	1052		
	28.4.9	Standard-Passwörter	1054		
	28.4.10	Captive Portals umgehen	1055		
28.5	Rogue A	Access Points	1057		
	28.5.1	Fake-Access-Point bereitstellen	1057		
	28.5.2	WLAN-Phishing	1060		
28.6	Schutzr	naßnahmen	1062		
	28.6.1	Allgemeine Maßnahmen	1062		
	28.6.2	Fortgeschrittene Sicherheitsmechanismen	1063		
28.7	Zusamı	menfassung und Prüfungstipps	1064		
	28.7.1	Zusammenfassung und Weiterführendes	1064		
	28.7.2	CEH-Prüfungstipps	1065		
	28.7.3	Fragen zur CEH-Prüfungsvorbereitung	1065		
29	Mobile	Hacking	1067		
29.1	Grundla	agen	1067		
	29.1.1	Mobile Betriebssysteme	1067		
	29.1.2	Apps und App-Stores	1069		
29.2	Angriffe	e auf mobile Geräte	1071		
	29.2.1	Schutzziele	1071		

	29.2.2	Angriffsvektoren	1072
	29.2.3	OWASP Mobile Top 10	1074
29.3	Mobile	Hacking in der Praxis	1075
	29.3.1	Android über den PC	1075
	29.3.2	Android-Rooting	1079
	29.3.3	Jailbreaking iOS	1084
	29.3.4	SIM-Unlock	1085
	29.3.5	Hacking-Tools für Android	1086
	29.3.6	Android-Tojaner erstellen	1088
	29.3.7	Angriffe auf iOS	1093
	29.3.8	Spyware für mobile Geräte	1094
29.4	Bring Y	Your Own Device (BYOD)	1095
	29.4.1	BYOD-Vorteile	1095
	29.4.2	BYOD-Risiken	1095
	29.4.3	BYOD-Sicherheit	1096
29.5	Mobile	Device Management (MDM)	1097
29.6		maßnahmen	
29.7	Zusam	menfassung und Prüfungstipps	1100
	29.7.1	Zusammenfassung und Weiterführendes	1100
	29.7.2	CEH-Prüfungstipps	
	29.7.3	Fragen zur CEH-Prüfungsvorbereitung	1102
30	IoT- un	nd OT-Hacking und -Security	1105
30.1	Das Int	ternet of Things	1105
	30.1.1	Was ist das Internet of Things?	1106
	30.1.2	Was umfasst das Internet of Things?	1106
	30.1.3	Die grundlegende Sicherheitsproblematik von IoT-Geräten	1107
30.2	IoT-Teo	chnik – Konzepte und Protokolle	1107
	30.2.1	IoT-Betriebssysteme	1108
	30.2.2	IoT-Kommunikationsmodelle	1108
	30.2.3	IoT-Übertragungstechnologien	1110
	30.2.4	IoT-Kommunikationsprotokolle	1112
30.3	Schwac	chstellen von IoT-Systemen	1113
	30.3.1	OWASP Top 10 IoT 2018	1113
	30.3.2	Angriffsvektoren auf IoT-Systeme	1116
30.4	IoT-An	griffszenarien	1118
	30.4.1	Rolling-Code-Angriff	1118
	30.4.2	Mirai – Botnet und DDoS-Angriffe	1120
	30.4.3	Lokale Angriffe über die UART-Schnittstelle	1121
	30.4.4	Command-Injection via Web-Frontend	1122
	30.4.5	Der BlueBorne-Angriff	1123
	30.4.6	Angriffe auf ZigBee-Geräte mit Killerbee	1124
	30.4.7	Angriffe auf Firmware	1125
30.5	Weitere	e Angriffsformen auf IoT-Ökosysteme	1126
	30.5.1	Exploit Kits	1126

	30.5.2	IoT-Suchmaschinen	1126
30.6	OT-Ha	cking	1128
	30.6.1	OT-Grundlagen und -Konzepte	1128
	30.6.2	Konvergenz von IT und OT	1129
	30.6.3	Das Purdue-Modell	1130
	30.6.4	OT-Sicherheitsherausforderungen	1131
	30.6.5	OT-Schwachstellen und Bedrohungen	1132
	30.6.6	OT-Malware	1133
	30.6.7	OT-Hackingtools und -Enumeration	1134
	30.6.8	Schutzmaßnahmen vor OT-Angriffen	1135
30.7	Schutz	maßnahmen vor IoT-Angriffen	1136
30.8	Zusam	menfassung und Prüfungstipps	1138
	30.8.1	Zusammenfassung und Weiterführendes	1138
	30.8.2	CEH-Prüfungstipps	1138
	30.8.3	Fragen zur CEH-Prüfungsvorbereitung	1138
31	•	e auf die Cloud	1141
31.1	Grundl	agen des Cloud Computings	1141
	31.1.1	Was ist eigentlich »die Cloud?«	1142
	31.1.2	Cloud-Service-Modelle	1143
	31.1.3	Deployment-Modelle für die Cloud	1144
	31.1.4	Besondere Computing-Varianten	1146
	31.1.5	Große Cloud-Anbieter	1147
31.2	Wichtig	ge Cloud-Technologien	1148
	31.2.1	Virtualisierung	1148
	31.2.2	Container-Technologien	1149
	31.2.3	Docker	1152
	31.2.4	Kubernetes	1154
	31.2.5	Schwachstellen von Container-Technologien	1155
	31.2.6	Serverless Computing	1156
	31.2.7	Schwachstellen von Serverless Computing	1157
	31.2.8	Weitere Cloud-Dienstleistungen	1158
31.3	Bedroh	ungen der Sicherheit und Integrität in der Cloud	1158
	31.3.1	Kontrollverlust.	1158
	31.3.2	Unsichere Cloud-Infrastruktur	1159
	31.3.3	Missbrauchs-Risiken beim Cloud-Anbieter	1160
	31.3.4	Unsichere Kommunikation mit der Cloud	1161
	31.3.5	Unzureichende Zugangskontrolle	1163
	31.3.6	Cloud Computing für Hacker	1163
	31.3.7	Übersicht und Zusammenfassung	1164
31.4	Angriff	e auf Cloud-Infrastrukturen	1164
	31.4.1	Zugangsdaten ermitteln	1164
	31.4.2	Persistenten Zugang sichern	1165
	31.4.3	Malware einschleusen	1166
	31.4.4	Unsichere Voreinstellungen ausnutzen	1166

	31.4.5	Cryptojacking	1167
	31.4.6	Zugang über Federation Services	1167
	31.4.7	Angriffsvektor Webanwendung	
31.5	Cloud-S	Security-Tools	
	31.5.1	Security-Tools des Cloud-Anbieters	1169
	31.5.2	Drittanbieter-Security-Software	1169
	31.5.3	Pentest-Simulation mit CloudGoat und Pacu	1170
31.6	Zusam	menfassung und Prüfungstipps	1171
	31.6.1	Zusammenfassung und Weiterführendes	
	31.6.2	CEH-Prüfungstipps	
	31.6.3	Fragen zur CEH-Prüfungsvorbereitung.	
32	Durchf	ühren von Penetrationstests	1175
32.1	Begriff	sbestimmung Penetrationstest	1175
	32.1.1	Was bedeutet »Penetrationstest« eigentlich?	1176
	32.1.2	Wozu einen Penetrationstest durchführen?	1176
	32.1.3	Penetrationstest vs. Security Audit vs. Vulnerability Assessment	1177
	32.1.4	Arten des Penetrationstests	1178
32.2	Rechtli	che Bestimmungen	1179
	32.2.1	In Deutschland geltendes Recht	1180
	32.2.2	US-amerikanisches und internationales Recht	1181
32.3	Vorber	eitung und praktische Durchführung des Penetrationstests	1183
	32.3.1	Die Beauftragung	1183
	32.3.2	Methodik der Durchführung	1185
	32.3.3	Praxistipps	1188
32.4	Der Per	ntest-Report	1191
	32.4.1	Dokumentation während des Pentests	1191
	32.4.2	Was umfasst der Pentest-Report?	1192
	32.4.3	Aufbau des Pentest-Reports	1193
32.5	Abschl	uss und Weiterführendes	1195
	32.5.1	Das Abschluss-Meeting	1196
	32.5.2	Weiterführende Tätigkeiten	1196
32.6	Zusam	menfassung und Prüfungstipps	1196
	32.6.1	Zusammenfassung und Weiterführendes	1196
	32.6.2	CEH-Prüfungstipps	1197
	32.6.3	Fragen zur CEH-Prüfungsvorbereitung.	1198
A	Lösung	gen	1201
	Stichwe	ortverzeichnis	1215

Einleitung

Sie suchen nach einem strukturierten, umfassenden Praxishandbuch zum Thema »Ethical Hacking und Penetration Testing«? Prima, dann sind Sie hier genau richtig! In diesem Buch lernen Sie die Vorgehensweisen und Techniken professioneller Hacker und Penetration-Tester kennen und erlernen das Handwerk von der Pike auf. Durch viele Schritt-für-Schritt-Anleitungen, die Sie selbst in Ihrem Hacking-Labor nachvollziehen können, erleben Sie die Hacking-Techniken quasi live und in der Praxis. Hier ist Mitmachen angesagt!

Dieses Buch versteht sich zum einen als Praxisleitfaden für einen fundierten Einstieg in die Welt der Hacker und Penetration-Tester. Zum anderen sind die Inhalte an das Curriculum des Certified-Ethical-Hacker-Examens (CEHv12) des EC-Council angelehnt, sodass Sie dieses Werk als zusätzliche Ressource für die Prüfungsvorbereitung nutzen können. Bitte beachten Sie hierzu, dass es bestimmte Voraussetzungen für die Prüfungszulassung gibt, die wir Ihnen im ersten Kapitel erläutern.

Das CEH-Examen unterliegt ständigen Aktualisierungen, die naturgemäß nicht im bereits gedruckten Buch berücksichtigt werden können. Im Buch-Memberbereich auf www.hacking-akademie.de/buch/member versuchen wir aber, immer zeitnah aktualisierte Informationen bereitzustellen. Die Zugangsdaten zum Memberbereich finden Sie am Ende dieser Einleitung.

Für wen ist dieses Buch geeignet?

Dieses Buch ist für Sie geeignet, wenn Sie sich praxisorientiert und umfassend mit den Themen Hacking und Penetration Testing beschäftigen möchten. Die Zielgruppe umfasst insbesondere:

- Angehende Ethical Hacker und Penetration-Tester
- System- und Netzwerkadministratoren mit Fokus auf IT-Sicherheit
- Verantwortliche im Bereich IT-Security
- Interessierte Power-User

Auch wenn Sie sich durch einfaches Durchlesen des Buches bereits einen guten Überblick über das Thema verschaffen können, ist der Inhalt eher dazu konzipiert, tief in die Materie einzutauchen, und fordert Sie mit konkreten praktischen Beispielen zum Mitmachen auf. Dies erfordert bei Ihnen auf diesem Level auch ein ordentliches Maß an Engagement und Eigeninitiative. Aber genau so lernen Sie die Methoden nicht nur in der Theorie, sondern direkt in der praktischen Umsetzung.

Die Inhalte bauen an einigen Stellen aufeinander auf, sodass das Buch für ein umfassendes Verständnis Kapitel für Kapitel durchgearbeitet werden sollte. Natürlich eignet es sich darüber hinaus auch als Nachschlagewerk, da zu allen Inhalten, die für das Verständnis eines Themas benötigt werden, entsprechende Verweise zu den jeweiligen Stellen im Buch vorhanden sind.

Für wen ist dieses Buch nicht geeignet?

Auch wenn Sie in diesem Buch sehr viele Hacking-Tools kennenlernen werden, so möchten wir an dieser Stelle doch klar betonen, dass das Buch nicht für Scriptkiddies gedacht ist, die mit ein paar wenigen Klicks coole Hacks zaubern und ihre Freunde beeindrucken wollen. Leser, die ohne viel Hintergrundwissen und Engagement ein paar oberflächliche Tricks lernen wollen, finden sicher andere Literatur interessanter.

Andersherum geht es hier auch nicht darum, versierten Profis, die bereits tief in den Themen stecken, den letzten Schliff zu geben. Zu jedem Thema, das das Buch aufgreift, lassen sich eigene Bücher schreiben. Auch wenn die Seitenzahl sehr groß ist, können wir zu vielen Themen nicht mehr als einen fundierten, praxisnahen Einstieg bieten.

Was werden Sie hier lernen?

In diesem Buch geht es um Ethical Hacking und Penetration Testing. Wir werden diese Begriffe noch detaillierter beschreiben. Vom Grundsatz handelt es sich darum, die Perspektive des Angreifers einzunehmen, um die Schwachstellen von Computersystemen und -netzwerken aufzudecken. Dabei haben wir unter dem Strich das Ziel, die IT-Systeme sicherer zu machen. Es geht also nicht darum, die gefundenen Schwachstellen für die eigene Bereicherung zu nutzen, sondern darum, dem Auftraggeber die Möglichkeit zu geben, diese zu beseitigen. Anders ausgedrückt, bilden wir Sie hier zu einem »gutartigen« Hacker aus. Die Vorgehensweise, Technologien und eingesetzten Tools sind jedoch weitgehend dieselben, wie sie von bösartigen Hackern verwendet werden. Diese lernen Sie damit also ebenfalls kennen. Es ist wie so oft: Nicht die Werkzeuge bestimmen darüber, ob sie etwas verbessern oder Schaden anrichten, sondern derjenige, der sich diese Werkzeuge zunutze macht und einsetzt.

Hacking ist einerseits sehr kreativ und individuell, andererseits gibt es aber auch eine sinnvolle Vorgehensweise mit verschiedenen Phasen, die in fast jedem professionellen Hacking-Angriff enthalten sind. Sie erfahren, welche das sind und wie die einzelnen Phasen ablaufen. Viele Hacking-Tätigkeiten bauen aufeinander auf, andere kommen nur in bestimmten Szenarien zum Tragen. Wir haben in diesem Buch fast alle relevanten und gängigen Bereiche abgedeckt: angefangen vom simplen Passwort-Hacking über diverse Web-Hacking-Szenarien bis hin zu Mobile- und IoT-Hacking. Für alle Angriffsformen werden effektive Verteidigungsmaßnahmen aufgelistet, so dass Sie Ihre Kunden dabei unterstützen können, die gefundenen Schwachstellen zu beheben.

Der Fokus in diesem Buch liegt allerdings auf den Angriffstechniken. Sie erhalten zum einen fundierte Hintergrundinformationen zur Vorgehensweise und zu den Hacking-Techniken und zum anderen viele Praxisszenarien, in denen Sie Ihr neues Wissen praktisch einsetzen können. Nachdem Sie dieses Buch durchgearbeitet und die Szenarien praktisch nachvollzogen haben, sind Sie auf dem besten Weg zu einem fähigen Ethical Hacker und Penetration-Tester. Im Anschluss sind Sie in der Lage, Ihre Fähigkeiten eigenständig weiterzuentwickeln und mit zusätzlichen Informationsquellen Ihr Know-how zu vertiefen. Zudem erhalten Sie eine wertvolle Ressource für die Vorbereitung auf das CEHv12-Examen, mit dem Sie Ihre Karriere als Ethical Hacker effektiv voranbringen können.

Inhaltsübersicht

Das Buch ist in sechs Teile untergliedert. Nachfolgend stellen wir Ihnen den Inhalt kurz vor, damit Sie sich ein Bild verschaffen können.

Teil I – Grundlagen und Arbeitsumgebung

Hier erfahren Sie zunächst in Kapitel 1, welche Hacker-Typen es gibt und welche Ziele diese verfolgen. Wichtig ist dabei auch der rechtliche Aspekt, den wir natürlich ebenfalls betrachten. In Kapitel 2 bauen wir gemeinsam die Arbeitsumgebung für unser Hacking-Labor auf, das Sie im Laufe des gesamten Buches nutzen können. In Kapitel 3 lernen Sie Ihr wichtigstes Arbeitsgerät namens Kali Linux kennen.

Kapitel 4 widmet sich der Anonymität im Internet und der Methoden, deren sich die Hacker bedienen, um anonym zu bleiben. In Kapitel 5 betrachten wir mit der Kryptografie eines der wichtigsten Konzepte im Rahmen der IT-Sicherheit, wobei kryptografische Systeme in der Praxis auch immer wieder Angriffen ausgesetzt sind.

Teil II - Informationsbeschaffung

Im zweiten Teil beschäftigen wir uns mit der Informationsbeschaffung. Zunächst lernen Sie in Kapitel 6 die passive Datensammlung. In Kapitel 7 nehmen wir das Netzwerk unter die Lupe mithilfe von Netzwerk-Scannern wie z.B. Nmap. Kapitel 8 enthält Techniken und Wege für den Enumeration-Prozess, bei dem wir versuchen, aus verschiedenen Netzwerk-Diensten so viele Informationen zu extrahieren wie möglich.

Mit dem Vulnerability-Scanning in Kapitel 9 werden wir dann bereits aggressiver und suchen gezielt nach Schwachstellen. Die Schwachstellenanalyse behandeln wir ebenfalls in diesem Kapitel.

Teil III - Systeme angreifen

Nun geht es daran, Systeme konkret zu hacken. Wir beginnen in Kapitel 10 mit dem klassischen Password-Hacking und betrachten diverse Wege, um an Login-Daten zu gelangen. Mit der Privilegien-Eskalation in Kapitel 11 zielen wir darauf ab, unserer Rechte zu erweitern, wenn wir einen nicht-privilegierten Zugang zu den Zielsystemen erlangt haben.

Die Kapitel 12 und 13 beschäftigen sich mit Malware. Zum einen lernen Sie, wie Malware Computersysteme angreift, und erfahren dabei auch, wie Sie selbst Trojaner und ähnliche bösartige Software erstellen können. Zum anderen betrachten wir die Malware-Analyse, also Wege, um Malware aufzuspüren und zu beseitigen.

In Kapitel 14 erfahren Sie, wie Sie mithilfe von Steganografie Dateien und Informationen unbemerkt und versteckt transportieren können. Kapitel 15 befasst sich mit dem Verwischen von Spuren. Dies ist ein elementarer Bestandteil eines Hacking-Prozesses, wenn der Angreifer unentdeckt bleiben möchte.

Teil IV - Netzwerk- und sonstige Angriffe

Der Übergang zu diesem Teil ist fließend. In Kapitel 16 schauen wir mit Wireshark & Co. hinter die Kulissen der Netzwerk-Kommunikation. Hier lernen Sie, wie Sie Passwörter und Login-Vorgänge mitschneiden und ganze Sessions analysieren können. Dies führt wie von selbst zu Kapitel 17, in dem es um Lauschangriffe und Man-in-the-Middle-Angriffe geht.

Mit Session-Hijacking kann ein Angreifer eine etablierte und authentifizierte Session von ahnungslosen Benutzern übernehmen und spart sich so die Eingabe von Zugangsdaten. Wie das geht, erfahren Sie in Kapitel 18.

In Kapitel 19 lernen Sie die wichtigsten Security-Systeme kennen, denen sich ein Angreifer gegenübersieht. Hierzu gehören neben Firewalls insbesondere Intrusion-Detection- bzw. -Prevention-Systeme sowie Honeypots.

Den Abschluss dieses vierten Teils bilden drei eher anders geartete Angriffsmethoden. In Kapitel 20 werfen wir einen Blick hinter die Kulissen des Social Engineerings. Mit dieser Technik greifen wir nicht die Computersysteme selbst an, sondern bedienen uns psychologischer Tricks, um die Benutzer der Systeme auszutricksen und an Informationen zu gelangen. Kapitel 21 präsentiert Ihnen gängige Hacking-Hardware. Hier lernen Sie zum Beispiel, wie Sie einen Keylogger installieren oder ein Hacking-Kit für die Hosentasche auf einem Raspberry Pi einrichten können. Last, but not least beschäftigen wir uns in Kapitel 22 mit DoS- und DDoS-Angriffen. Diese destruktive Angriffsform ist im Internet weit verbreitet und kann auch im Rahmen von größer angelegten Angriffen nützlich sein, um bestimmte Systeme außer Gefecht zu setzen, die den Angriff evtl. verhindern könnten.

Teil V - Web-Hacking

Einer der wichtigsten Angriffsvektoren ist der Angriff auf Webanwendungen. Daher haben wir diesem Thema einen breiten Raum eingeräumt. In Kapitel 23 lernen Sie zunächst die Grundlagen der Web-Kommunikation und -Technologien und erfahren, wie Angriffe auf Webserver und -anwendungen grundsätzlich funktionieren.

Kapitel 24 führt Sie in die Welt der *OWASP Top 10* ein, OWASP steht für *Open Web Application Secu- rity Project.* Dabei handelt es sich um die zehn gängigsten Angriffsvektoren auf Webanwendungen. In diesem Kapitel erfahren Sie die daraus resultierenden Angriffe in Theorie und Praxis. Kapitel 25 greift den wichtigsten Punkt der OWASP Top 10 heraus und betrachtet den Angriffsvektor SQL-Injection von allen Seiten. In Kapitel 26 ergänzen Sie Ihr Wissen zu Injection-Angriffen und wir betrachten weitere Formen wie Command-Injection, Code-Injection oder LFI und RFI.

Den Abschluss dieses Teils bildet eine sehr gängige Form des Angriffs auf Software, die zwar häufig bei Webanwendungen zum Einsatz kommt, aber nicht auf diese beschränkt ist. Die Rede ist von Buffer-Overflow-Angriffen, die Sie in Kapitel 27 kennenlernen. Dort gehen wir ein umfassendes Praxisbeispiel durch, sodass Sie Ihren eigenen Buffer-Overflow-Angriff durchführen können.

Teil VI - Angriffe auf WLAN und Next-Gen-Technologien

Nun kommen wir zum letzten Teil des Buches, in dem wir uns zunächst mit der Thematik der mobilen Geräte beschäftigen. Im Kapitel 28 lernen Sie alles rund um WLAN-Hacking. Welchen Angriffsvektoren Smartphones und Tablets ausgesetzt sind, erfahren Sie in Kapitel 29. Kapitel 30 führt Sie in die Welt des IoT-Hackings ein, das immer wichtiger wird, da das Internet of Things seinen Siegeszug unaufhaltsam fortsetzt und die internetfähigen Alltagsgegenstände oft angreifbar sind. Mit dem Thema Cloud-Security schließen wir das Themenspektrum dieses Buches in Kapitel 31 ab.

An dieser Stelle haben Sie ein fundiertes Verständnis für Hacking-Methoden und -Technologien sowie für gängige Hacking-Tools. Zudem haben Sie zu allen Angriffsmethoden und -vektoren die effektivsten Gegenmaßnahmen kennengelernt und sind in der Lage, Kunden bzw. Auftraggeber hinsichtlich der Absicherung ihrer Systeme fundiert zu beraten.

Um dieser Tätigkeit einen Rahmen zu geben, existieren Penetrationstests. Das letzte Kapitel dieses Buches erläutert detailliert die Vorgehensweise bei einem Penetrationstest und gibt viele Tipps und Hinweise für angehende Penetration-Tester.

Aktualität der Inhalte

Als wir dieses Buch vor über sechs Jahren begonnen hatten, war uns nicht einmal im Ansatz klar, auf was wir uns einlassen würden! Es sollte unser bisher umfangreichstes Buchprojekt werden, da der Inhalt ständigen Änderungen und Anpassungen unterworfen ist. Als wir das Buch inhaltlich einmal fertiggestellt hatten, konnten wir sozusagen von vorn anfangen und mussten viele Stellen überarbeiten, vieles ergänzen und einiges streichen, da es keine Gültigkeit mehr hatte. Fast die Hälfte des Buches wurde in der Zwischenzeit inhaltlich überarbeitet, um es an den aktuellen Stand anzupassen.

Mittlerweile wurde das Buch für die 3. Auflage erneut an vielen Stellen überarbeitet, um es unter anderem für die aktuelle Zertifizierung zum CEHv12 zu aktualisieren. Und auch hier mussten wir an diversen Stellen veraltete Tools und Beschreibungen anpassen.

Aufgrund dieser Erfahrung haben wir einen wichtigen Hinweis an Sie als Leser: Wir haben viel Herzblut in dieses Buch investiert. Alle Anleitungen wurden mit größtmöglicher Sorgfalt erstellt und mehrfach getestet. Leider können die Anleitungen jedoch immer nur den Stand zum Zeitpunkt der Erstellung darstellen. Programme, Webseiten und Prozesse unterliegen in der IT-Welt ständiger Weiterentwicklung und Veränderung. Daher kann und wird es passieren, dass vereinzelt Programme nicht mehr so funktionieren wie beschrieben, Webseiten anders aussehen als im Buch abgedruckt und Inhalte unter Umständen nicht mehr in der Form zur Verfügung stehen wie beschrieben. Wir bitten hierfür um Verständnis und motivieren Sie, in derartigen Fällen selbstständig nach Lösungen zu suchen.

Denn das ist Hacking: neue Wege gehen, Dinge anders machen, um zu neuen Ergebnissen zu gelangen. Hacking erfordert Kreativität, Neugier und eine gute Portion Beharrlichkeit, da Hacker die Computersysteme und Software nicht in der vom Hersteller oder Entwickler erwarteten Art und Weise nutzen und daher mit dem Unerwarteten umgehen müssen.

Die Webseite zum Buch

Obwohl dieses Buch bereits sehr umfangreich ist, mussten wir aus Platzgründen diverse Inhalte auslagern. An vielen Stellen im Buch verweisen wir auf die jeweiligen Dokumente mit ergänzenden Informationen, die unter www.hacking-akademie.de/buch/member verfügbar sind. Sie stehen exklusiv für Sie als Leser zur Verfügung und sind zugangsgeschützt. Geben Sie das Passwort h4ckm3mber ein, um in den Buch-Memberbereich zu gelangen und hier auf alle zusätzlichen Inhalte zugreifen zu können. In diesem Zusammenhang stellen wir auch eine Errata-Seite bereit, in der alle bekannten Fehler bzw. Updates zu den Inhalten erfasst sind. Falls Sie Fehler melden oder anderweitiges Feedback geben wollen, freuen wir uns darüber. Dies können Sie an buch@hacking-akademie.de schicken.

Noch ein Hinweis zur Online-Learning-Plattform Hacking-Akademie: Hier bieten wir als Ergänzung zum Buch eine umfassende Ausbildung zum Ethical Hacker und Penetration-Tester an. Mit praxisorientierten Videolektionen und eigener Laborumgebung erhalten Sie hier die Möglichkeit, Ihre Hacking- und Security-Skills systematisch auf- und auszubauen.

Worauf warten Sie noch?

Jetzt liegt es an Ihnen! Haben Sie das Zeug zu einem fähigen Hacker? Sie benötigen ein hohes Maß an Motivation und Neugier, Disziplin und Geduld. Hacking lernt man nicht von heute auf morgen. Hacking umfasst grundsätzlich die gesamte Palette der IT-Systeme und -Anwendungen.

Wer hier jenseits des Scriptkiddie-Niveaus erfolgreich sein möchte, beschreitet einen langen, spannenden Weg, auf dem er sehr viel lernen, aber auch immer wieder an seine Grenzen stoßen wird. Wir freuen uns, wenn wir Sie bei Ihrem Einstieg in die spannende Welt des Hackings und Penetration Testings ein Stück weit begleiten und unterstützen können.

Jetzt bleibt nur eins: Gehen Sie den ersten Schritt, beginnen Sie Ihren Weg! Bauen Sie noch heute Ihr Hacking-Labor auf und starten Sie Ihre Karriere als Ethical Hacker!

Herzliche Grüße, Eric Amberg und Daniel Schmid

Über die Autoren

Eric Amberg ist selbstständiger Experte für IT-Netzwerke und -Sicherheit und hat in den letzten 20 Jahren zahlreiche Projekte aller Größenordnungen durchgeführt. Seine große Leidenschaft ist die Wissensvermittlung, die er in Büchern, Magazinen und insbesondere Videotrainings stets praxisnah und lebendig präsentiert. Mit der Hacking-Akademie hat Eric eine Online-Plattform zum Lernen von Ethical Hacking und Penetration Testing in deutscher Sprache entwickelt: https://hacking-akademie.de

Daniel Schmid ist bei einem großen Energiekonzern im Bereich Netzwerke und Security tätig. Als Projektleiter für diverse große, teils internationale Projekte hat er in über 10 Jahren viel Erfahrung in der Planung und Implementation sicherheitskritischer Infrastruktur gesammelt und hat dabei seine Leidenschaft für das Thema »Hacking und Penetration Testing« entdeckt.

Eric und Daniel haben bereits viele gemeinsame Projekte erfolgreich umgesetzt und sind die Gründer der Hacking-Akademie: https://hacking-akademie.de

Die perfekte Ergänzung zu diesem Buch

Nur für die Leser unseres Buches:

Exklusiver 50% Rabattcode für die Hacking-Akademie!

Werden Sie Teilnehmer der Hacking-Akademie!

Vielen Dank, dass Sie sich für dieses Buch entschieden haben. Als Dankeschön bieten wir Ihnen einen 50% günstigeren Zugang zur <u>videobasierten</u> Online-Learning-Plattform **Hacking-Akademie**.

Erweitern Sie Ihre Fähigkeiten mit unserem hochwertigen Lernangebot:

Das erwartet Sie:

- Grundkurs Hacking & Security: Das solide Fundament für den Einstieg
- Video Lektionen: Einfaches Lernen durch Zuschauen und Mitmachen
- Online-Laborumgebungen: Praxistraining in cloudbasierten HackLabs
- CTF-Challenges: Hacking-Herausforderungen in der Praxis
- Community-Forum: Fragen stellen und Mitmachen in der Community
- Eigene Zertifikate: Steigern der Jobchancen durch zertifiziertes Wissen

Ihr exklusiver Rabattcode:

Nutzen Sie diesen Code bei der Anmeldung auf unserer Website und erhalten Sie auf die Anmeldung 50% Rabatt:

https://hacking-akademie.de

Bereit für die Herausforderung? Dann starten Sie jetzt Ihre Ausbildung zum Ethical Hacker in der Hacking-Akademie!

Danksagung

Dieses Buch war ein echtes Mammut-Projekt, das ohne die Unterstützung von vielen Menschen nicht zu diesem bemerkenswerten Ergebnis geführt hätte. Daher möchten sich die Autoren Eric und Daniel bei allen Beteiligten herzlich für den großartigen Einsatz und die fantastische Unterstützung bedanken.

Unser besonderer Dank gilt unseren unermüdlichen Testlesern Anton Perchermeier, Martin Meinl, Markus Bauer und Timo Scheidemantel. Mit euren umfassenden, kritischen und fundierten Rückmeldungen habt ihr die hohe Qualität dieses Buchs erst ermöglicht. Wir schätzen uns glücklich, Profis aus dem IT-Security-Umfeld wie euch als engagierte Testleser zu haben. Dank euch ist der Inhalt des Buchs noch einmal deutlich aufgewertet worden.

Auch an Sabine Schulz vom mitp-Verlag geht ein herzliches Dankeschön! Liebe Sabine, du hast während der langen Entstehungszeit dieses Buchs stets zu uns gehalten und trotz vieler Verzögerungen immer mit Verständnis reagiert – das ist alles andere als selbstverständlich, hat aber auch dazu beigetragen, dass wir uns noch mehr Mühe mit dem Buch gegeben haben, damit sich die Wartezeit auch wirklich gelohnt hat.

Man sagt, hinter jedem erfolgreichen Mann steht eine starke Frau. Ob der Spruch allgemein noch zeitgemäß ist, sei dahingestellt – auf uns trifft er auf jeden Fall zu. Ohne dass unsere Partnerinnen uns den Rücken freigehalten hätten und sehr tolerant mit der vielen Zeit umgegangen wären, in der wir am Buch-Manuskript gesessen haben, wäre dieses Buchprojekt nicht realisierbar gewesen. Unser ganz besonderer Dank gilt daher unseren Ehefrauen Kati und Rocío. Ihr habt uns dabei so großartig unterstützt und mit viel Verständnis und Geduld in den letzten Jahren auf die zusätzliche Arbeitslast reagiert, die uns das Buch auferlegt hat. Nur mit eurer Hilfe konnte dieses Buch entstehen!

Berlin und Stuttgart, 16. Februar 2024 Eric und Daniel

Grundlagen Hacking und Penetration Testing

Hacker sind die Bösen! Hacker sind darauf aus, möglichst viel Schaden anzurichten und bedrohen das Internet und jeden Rechner, der daran angeschlossen ist! Also gilt es, Hackern möglichst schnell und nachhaltig das Handwerk zu legen ...

Okay, Schluss damit! Die obige Aussage ist natürlich Unsinn! Tatsache ist, dass wir Hackern diverse geniale Programme und Tools verdanken. Kennen Sie Linux? Nun, wer nicht? Wissen Sie, wer es entwickelt hat? Linus Torvalds, ein finnischer Student, der sich nicht damit abfinden wollte, dass AT&T den Quellcode zu UNIX nicht freigeben wollte und ein System benötigte, das besser auf seine Anforderungen zugeschnitten war. Daraus entstand Linux (Linus+X). Und auch wenn die meisten »Rechtschaffenen« unter uns Torvalds einen »Entwickler« nennen würden, so versteht er sich selbst doch als »Hacker«.

Es gibt also jede Menge Begrifflichkeiten zu unterscheiden. In diesem Kapitel legen wir die Grundlagen für Ihr Verständnis von Hacking und Penetration Testing. Sie lernen insbesondere Folgendes:

- Was ist Hacking?
- Verschiedene Hacker-Typen
- Motive und Absichten eines Hackers
- Was bedeutet Ethical Hacking?
- Die Zertifizierung zum Ethical Hacker (CEH)
- Die Schutzziele
- Wie funktioniert ein Penetrationstest?
- Hacking-Beispiele

In diesem ersten Kapitel beschäftigen wir uns mit den Grundlagen des Hackings. Damit Sie verstehen, was ein Hacker überhaupt ist und wo das Wort Hacking herkommt. Sie werden zudem erfahren, welche verschiedenen Hacker-Typen es gibt und wie die Ziele der Hacker aussehen. Sie lernen, was sich hinter dem *Ethical Hacking* verbirgt und warum Sie sich diesen Ehrencodex zu Eigen machen sollten.

Darüber hinaus betrachten wir auch die andere Seite. Die Schutzziele geben Aufschluss darüber, gegen welche Gefahren wir uns schützen wollen. Letztlich geht es darum, Computersysteme und -netzwerke sicherer zu machen. Der Weg ist also das Hacking, das Ziel jedoch, die IT-Sicherheit zu erhöhen. Daher werden wir ein großes Augenmerk auf den Schutz der gefundenen Schwachstellen und Angriffsvektoren legen.

Ein *Ethical Hacker* betreibt seine Tätigkeit regelmäßig im Rahmen eines beauftragten Penetrationstests. Sie lernen, wie ein solcher Test aufgebaut ist, welchen Klärungsbedarf es mit dem Auftraggeber gibt und wie ein Hacker bzw. Penetrationstester vorgeht.

Den Abschluss dieses Kapitels liefern einige bekannte Hacking-Beispiele, die Ihnen schon einmal einen gewissen Bezug zur Realität zeigen. Im Laufe dieses Buches lernen Sie noch viele weitere Möglichkeiten kennen, wie Computersysteme angegriffen werden können. Dabei gehen wir auch immer wieder auf bereits bekannte Angriffe ein und beschreiben diese.

1.1 Was ist Hacking?

In der heutigen Zeit von Informationstechnologien und Vernetzung spricht man von einem »Hacker«, wenn es um eine Person geht, die sich Zugriffe zu Netzwerken, Systemen und Anwendungen verschafft. Ohne dass der Besitzer der jeweiligen Einrichtungen ds beabsichtigt hat. Doch das war nicht schon immer so.

Wo kommt denn dieses Wort überhaupt her und was ist denn Hacking eigentlich? Der Begriff »Hacking« kommt aus einer Zeit, in der nicht Netzwerke und Computersysteme im Fokus standen. Denn damit hatte der Begriff erst mal gar nichts zu tun. Es ging vielmehr darum, sich so intensiv mit einer bestimmten Technik zu beschäftigen, dass man einen Weg findet, scheinbar Unmögliches machbar zu machen. Auf Deutsch hätte man das Wort »Tüftler« verwendet.

Ein Hacker war jemand, der mithilfe von ein paar Streichhölzern, einem Gummi und einem Bleistift einen Fernseher bauen kann. Oder war das MacGyver? :-) Spaß beiseite. Tatsächlich war ein Hacker ursprünglich einfach nur jemand, der sich sehr intensiv mit einer Technologie auseinandergesetzt hat, um sie zu begreifen, für sich nutzbar zu machen und ggf. zu verbessern. Ein Hacker ist nichts Bedrohliches oder Böses an sich. Dieser Ruf kam erst später durch die Medien und als es die ersten Einbrüche in fremde Systeme gab. Heutzutage hat ein Hacker in der Öffentlichkeit kein gutes Ansehen, man verbindet den Begriff in der Regel mit einem Verbrecher, der gegen das Gesetz handelt. Doch das stimmt so nicht zwangsläufig.

Aber wie kommt denn nun dieses Bild vom Hacker, der in fremde Computersysteme eindringt und allerlei Schaden anrichtet, zustande? Nun, zweifelsfrei haben Hacker eines gemeinsam: Sie sind neugierige Menschen, die neue Wege suchen, insbesondere mit Computersystemen zu arbeiten! Und einige von ihnen sind scharf auf Informationen. Dabei ist es zunächst einmal zweitrangig, ob ein Computersystem diese Informationen freiwillig bereitstellt oder nicht. Im Gegenteil versprechen gut geschützte Computer und Netzwerke sogar interessantere Informationen – proportional steigend zu den Schutzmaßnahmen.

Und so waren es natürlich auch gerade die Hacker mit ihrem tiefgreifenden Wissen über Computersysteme und -netzwerke, die, oftmals aus purer Neugier, Wege in diese Systeme gesucht und gefunden haben. In vielen Fällen wurden die gefundenen Schwachstellen dem jeweiligen Eigentümer bekannt gemacht und die möglicherweise gefundenen Daten und Informationen gar nicht verwendet – es ging nur um die Machbarkeit eines Einbruchs.

Aber wie es so ist, nutzen nicht alle ihr außerordentliches Wissen, um Gutes zu tun, diese Welt sicherer zu machen oder interessante Software unentgeltlich zur Verfügung zu stellen. Stattdessen unterliegen sie der Verlockung, ihr Expertenwissen für sich selbst zu nutzen, um sich zu bereichern.

Und genau hier grenzen sich die einzelnen Hacker-Typen voneinander ab. Denn der traditionelle Hacker im oben beschriebenen Sinne möchte keinesfalls in einen Topf mit diesen Kriminellen geworfen werden. Daher wird der »böse« Hacker auch generell als »Cracker« bezeichnet. Doch dies ist nur eine sehr globale Kategorisierung. Für eine fundierte Unterscheidung derjenigen, die sich mit dem Thema »Hacking« intensiver beschäftigen, müssen wir etwas weiter in die Tiefe gehen und neben der Motivation auch die Qualität der Tätigkeit betrachten.

1.2 Die verschiedenen Hacker-Typen

Bestimmt kennen Sie aus diversen Blockbustern die schwarzen Gestalten, die hinter einer Wand von Bildschirmen sitzen und nur von den kryptischen, grünen Zeichen beleuchtet werden, die über die Monitore rasen. Auch wenn dieses gängige Klischee tatsächlich durchaus vereinzelt bedient wird und einige Zeitgenossen auf diese Art arbeiten, gibt es doch auch ganz andere Inkarnationen der Hacker-Zunft.

Es finden sich nämlich genauso Hacker, die mit Anzug und Krawatte bei namhaften Firmen einund ausgehen, um deren Sicherheit zu testen. Diese Leute haben auch eine Hacking-Ausbildung, nutzen ihr Wissen allerdings nicht, um Schaden anzurichten, sondern um genau davor zu schützen – man nennt sie auch Penetrationstester bzw. kurz: Pentester. Tatsächlich gibt es aber auch böse Jungs, die Anzug und Krawatte tragen. In bestimmten Situationen gilt: Kleider machen Leute. Und wer z.B. in einer Bank ein Computer-Terminal hacken möchte, tut gut daran, optisch nicht aufzufallen. Auch für das *Social Engineering*, bei dem Informationen über Menschen anstatt über Technik gewonnen werden, ist das Auftreten oft ein wichtiger Aspekt. Näheres hierzu finden Sie in Kapitel 20 *Social Engineering*.

Nachfolgend eine Übersicht über die wichtigsten Hacker-Klassifikationen.

Scriptkiddies

Sie haben wenig Grundwissen und versuchen, mithilfe von Tools in fremde Systeme einzudringen. Dabei sind diese Tools meist sehr einfach über eine Oberfläche zu bedienen. Die Motivation ist meistens Spaß und die Absichten sind oft krimineller Natur. Oftmals möchten Scriptkiddies mit ihren Aktionen Unruhe stiften. Die Angriffe sind meist ohne System und Strategie. Viele Hacker starten ihre Karriere als Scriptkiddie, nutzen die Tools zunächst mit wenig Erfahrung, lernen aus dem Probieren, entwickeln sich weiter und finden dadurch einen Einstieg in die Szene.

Black Hats

Diese Gattung Hacker beschreibt am ehesten die Hacker, die man aus den Medien kennt. Hier redet man von Hackern mit bösen Absichten. Sie haben sehr gute Kenntnisse und greifen bewusst und strukturiert Unternehmen, Organisationen oder Einzelpersonen an, um diesen Schaden zuzufügen. Die Ziele der Black Hats sind vielfältig und reichen vom einfachen Zerstören von Daten bis hin zum Diebstahl von wertvollen Informationen, wie Kontodaten oder Unternehmensgeheimnissen. In manchen Fällen reicht es den Black Hats auch, wenn sie erfolgreich die Server ihres Opfers lahmlegen und damit Sabotage verüben.

White Hats

Einen White Hat Hacker nennt man oft auch einen Ethical Hacker. Er nutzt das Wissen und die Tools eines Hackers, um zu verstehen, wie Black Hats bei ihren Angriffen vorgehen. Im Gegensatz zum Black Hat will der White Hat jedoch die betreffenden Systeme letztlich vor Angriffen besser schützen und testet daher die Schwachstellen aktiv aus. Damit hat ein White Hat Hacker grundsätzlich keine bösen Absichten, im Gegenteil, er unterstützt die Security-Verantwortlichen der jeweiligen Organisation. White Hat Hacker oder Ethical Hacker versuchen im Anschluss an ihre Hacking-Tätigkeit, herauszufinden, welche Sicherheitslücken es gibt, und geben eine Anleitung dazu, diese möglichst effizient zu schließen.

Penetrationstester (Pentester)

Zu den White Hat Hackern gehören auch die sogenannten Penetrationstester. Hier steht grundsätzlich ein Auftrag im Hintergrund eines Angriffs. Pentester werden angeheuert, um ein bestimmtes System auf Herz und Nieren zu testen. Hier wird sehr systematisch nach Schwachstellen gesucht. Ein Penetrationstester hat eine ausdrückliche Genehmigung für sein Tun. Am Ende seiner Arbeit steht ein Bericht zur Verfügung, in dem alle gefundenen Schwachstellen dem Auftraggeber aufgezeigt werden. Dieser hat dann die Möglichkeit, die Lücken zu schließen, bevor die Black Hats ihr Glück versuchen ...

Grey Hats

Genauso wie die Farbe Grau zwischen Schwarz und Weiß liegt, so liegen die Grey Hats zwischen den Black und den White Hat Hackern. Mal haben sie gute, mal schlechte Absichten. Je nachdem was ihnen gerade lukrativ erscheint. Ein Grey Hat ist nicht grundsätzlich böse, nimmt es mit der Ethik aber auch nicht unbedingt so genau.

Cyber-Terroristen

Dies sind organisierte Gruppen, die sich gegen bestimmte Dinge auflehnen und mithilfe des Internets und seiner Technologien Angriffe durchführen. Dabei versuchen sie, möglichst viel Schaden anzurichten. In vielen Fällen ist ihr Tun politisch oder auch religiös motiviert.

Staatlich unterstützte Hacker

Hierbei handelt es sich um Hacker, die im Auftrag einer Regierung agieren. Sie wurden speziell ausgebildet und versuchen, als Agenten beispielsweise an geheime Informationen zu kommen. Das Einsatzgebiet kann der Kampf gegen den Terror sein oder auch das Sammeln von Informationen über einen Gegner in Konfliktsituationen. Insbesondere die USA, Russland und China sind hier sehr aktiv.

Suicide Hacker

Der CEH (Certified Ethical Hacker) beschreibt hier eine Ausprägung des Hackings, bei dem der Angreifer ohne Rücksicht auf Verluste vorgeht und dabei auch sich selbst der Gefahr aussetzt, entdeckt zu werden. Dabei handelt es sich ggf. nicht wirklich um Profis, sondern eher um Verzweiflungstäter, die jedoch aufgrund ihrer Kompromisslosigkeit kurzfristig hocheffektiv ihre Ziele erreichen können.

Hacktivisten

Werden Systeme, insbesondere Webserver, im Internet gehackt, um auf politische Inhalte hinzuweisen und zu protestieren, sprechen wir von *Hacktivismus* oder *Hacktivisten*. Dabei werden in der Regel die originalen Webinhalte durch eigene Inhalte ersetzt. Diesen Prozess nennt man auch defacen (von engl. Face = Gesicht). Weitere Methoden der Hacktivisten sind Denial-of-Service-Angriffe und E-Mail-Spamming. Die bekannteste Hacktivist-Gruppe kennen Sie vielleicht sogar schon, die Rede ist von Anonymous.

Oft ist es nicht einfach, zwischen den verschiedenen Typen zu unterscheiden. Ein Black Hat Hacker kann genauso auch ab und zu ein Hacktivist sein und ein White Hat arbeitet oft auch als Penetrationstester. Wichtig ist, zu wissen, dass nicht alle Hacker dieselben Absichten haben und es Hacker mit unterschiedlichsten Motiven gibt. Gutes Stichwort ...

1.3 Motive und Absichten eines Hackers

Egal, ob White oder Black Hat Hacker: Die Tools, die Techniken, die Vorgehensweise und auch das Wissen ist annähernd dasselbe. Unterschieden wird darin, welche Motive und Absichten ein Hacker hat.

1.3.1 Das Motiv

Fragen Sie einen Hacker (oder Cracker) danach, könnten Sie typischerweise folgende Antworten erhalten:

Ich möchte mich an jemandem rächen!

Rache ist kein seltenes Motiv, ob es der alte Arbeitgeber ist, der einen entlassen hat, eine Firma, mit der man Probleme hatte, oder gar die/der Ex-Partnerin/Partner. Das Ziel des Hacking-Angriffs besteht darin, jemandem Schaden zuzufügen, dem man nicht wohlgesonnen ist.

Ich möchte damit Geld verdienen!

Wer das Hacking beherrscht, dem stehen viele Türen offen. Gute White Hat Hacker sind gefragt – egal, ob sie als Security-Spezialist um die Sicherheit eines Unternehmens bemüht sind oder großen Organisationen Penetrationstests anbieten. Das White Hat Hacking ist durchaus lukrativ. Aber auch Black Hat Hacker kommen an ihr Geld, meistens allerdings durch illegale Weise wie Erpressung oder Datendiebstahl. Im Zweifel werden sie für ihre Aktivitäten von anderen bezahlt, in deren Auftrag sie ein bestimmtes Ziel verfolgen.

Ich möchte Spaß haben!

Keine Frage, Hacking macht Spaß, das werden Sie noch früh genug merken. Diese Mischung von Nervenkitzel und Erfolgserlebnis nach einem gelungenen Angriff ist sehr reizvoll. Daher gibt es viele Menschen, die sich das Hacking zum Hobby gemacht haben, eben weil es Spaß macht. Auch hier kann die Waage zur einen oder zur anderen Seite ausschlagen: Entweder nutzen Sie Ihr Wissen, um anderen zu helfen oder ihnen zu schaden ...

Ich möchte jemanden ausspionieren!

Nicht gerade die feine Art, aber es finden sich immer wieder gute Gründe, um einen Menschen, ein Unternehmen oder eine Institution auszuspionieren. Den klassischen Job eines Privat-Detektivs übernimmt in diesem Fall der Hacker. Die umfangreichsten Informationen finden sich heutzutage nicht mehr in Aktenschränken, sondern auf den Festplatten der Computer einer Person oder Institution. Daher ist der Einsatz von Hacking-Methoden sehr vielversprechend, um an sensible Informationen zu gelangen.

Ich möchte etwas bewegen!

Auch Aktivismus ist oft ein Motiv zum Hacken – daher der bereits oben beschriebene Begriff *Hacktivismus*. Es gibt eine Vielzahl von Angriffen auf politische Parteien bzw. Länder, Bewegungen und Firmen. Man muss hierzu heutzutage nicht mehr auf die Straße gehen, der Protest kann auch virtuell stattfinden, wie wir bereits weiter oben dargelegt haben.

Ich möchte im Mittelpunkt stehen!

Meldungen über Hacking-Angriffe sind aus den Medien kaum noch wegzudenken. Möchten Sie auch mal in der Zeitung stehen? Dazu ist nur ein richtiger Angriff an der richtigen Stelle notwendig. Natürlich wäre es nicht gut, wenn Sie Ihren Namen unter einem Fahndungsfoto stehen sehen. Meist verbergen sich Hacker daher hinter Pseudonymen oder Gruppen. Bekannte Hacking-Gruppen sind zum Beispiel *Anonymous*, *AntiSec* oder *LulzSec*.

1.3.2 Ziel des Angriffs

Warum ein Hacker einen Angriff ausführt, haben wir also geklärt; stellt sich noch die Frage, was er genau vorhat. Welche Absichten können also hinter einem Hacking-Angriff stecken? Betrachten wir die wichtigsten:

Datendiebstahl

Der Angreifer ist auf geheime Daten seiner Opfer aus, er möchte an Informationen kommen. Daher geht er gezielt auf die Suche nach bestimmten Dateien oder Datensätzen. Die Daten können dann gewinnbringend weiterverkauft, gegen das Opfer verwendet oder erst gegen ein Lösegeld wieder freigegeben werden.

Manipulation

Auch hier sucht der Angreifer nach Daten, aber nicht, um diese an sich zu bringen, sondern um sie zu verändern. Das kann insbesondere bei finanziellen Transaktionen teilweise gravierende Folgen haben. Stellen Sie sich einmal vor, das Komma auf Ihrem monatlichen Gehaltszettel wäre um eine Stelle nach rechts verschoben ... und nun stellen Sie sich Ihren Arbeitgeber vor. Wo es Gewinner gibt, existieren immer auch Verlierer!

Erpressung

Mit gestohlenen oder manipulierten Daten kann der Angreifer das Opfer natürlich auch erpressen: Zahlt der Betroffene nicht die geforderte Summe, so werden z.B. Firmen-Interna veröffentlicht oder ein zentrales System lahmgelegt.

Eine Variante hierzu ist der Einsatz von *Ransomware*. Dabei werden die Daten des Opfers verschlüsselt und der Schlüssel nur gegen Zahlung eines Geldbetrags (engl. Ransom) übermittelt.

Rechte erweitern

In den meisten Fällen steckt dahinter die Absicht, den Angriff effektiv fortzuführen. Es wird versucht, an möglichst viele Rechte und Privilegien zu gelangen, um damit eine möglichst umfassende Kontrolle über das Zielsystem zu bekommen. Stellen Sie sich vor, Sie melden sich als normaler Benutzer an einem System an und erlangen durch Hacking-Methoden Administrator-Privilegien. Von diesem Moment an stehen Ihnen alle Türen offen, sodass Sie z.B. neue Software installieren oder die Systemkonfiguration ändern können. Somit ist die Rechte-Erweiterung (auch als *Privilegien-Eskalation* bzw. gängiger *Privilege Escalation* bekannt) selten Selbstzweck, sondern in der Regel Mittel zum Zweck.

Unerlaubt etwas steuern

Viele Systeme haben die Aufgabe, etwas zu steuern. Denken Sie hierbei an Verkehrsleitrechner, Sicherheitszentralen, Maschinensteuerungen usw. Hat man sich einmal in die Sicherheitszentrale ein-

gehackt, spart man sich das Brecheisen. Ist es z.B. einem Hacker möglich, sich in die Kontrollsysteme eines Kernkraftwerks zu hacken, kann das fatale Folgen bis hin zum Super-GAU haben. Sie halten das für weit hergeholt? Dann warten Sie mal ab, bis Sie die perfiden Methoden von *Stuxnet* kennengelernt haben, einer Wurmsoftware, die wir Ihnen in Abschnitt 1.8.2 dieses Kapitels vorstellen.

Geld stehlen

Viele Angriffe finden auch auf Banken und Geldautomaten statt. Das Ziel der Begierde ist der schnöde Mammon – also Geld. Mal ehrlich: Haben Sie nicht auch schon davon geträumt, einen Geldautomaten so zu manipulieren, dass er unbegrenzt Geld ausspuckt? Wir zeigen Ihnen ... NICHT, wie es geht! Aber es gibt Techniken und Methoden, um sich zu bereichern, auch ohne den Bankautomaten aus dem Fundament zu reißen. In einigen Fällen werden Bankautomaten mit veralteter (und damit anfälliger) Software, wie z.B. Windows XP betrieben. Über Remote-Zugriff ist es möglich, entsprechende Schadsoftware zu installieren, um damit die Bankautomaten zu manipulieren.

Darüber hinaus ist es natürlich auch durch die Manipulation von Kontenbewegungen und Finanzsoftware möglich, Geld auf das eigene Konto auf den Bahamas transferieren zu lassen. Wie Sie feststellen, ist dieses Hacking-Ziel in der Regel durch Manipulation zu erreichen, die wir weiter oben bereits grundlegend als übergeordnetes Hacking-Ziel ausgemacht haben.

Ruf ruinieren

Wie Sie schon wissen, können die Motive für Hacking auch Rache oder Aktivismus ein. Die Absicht, einen Ruf zu ruinieren, kann auf verschiedene Art und Weise umgesetzt werden. Eine Möglichkeit besteht darin, einen erfolgreichen Angriff bekannt werden zu lassen. Stellen Sie sich z.B. vor, in den Medien wird von einem erfolgreichen Hacking-Angriff auf eine Bank berichtet. Das richtet großen Image-Schaden an.

Zugang/Service blockieren

Eine der häufigsten Angriffsformen ist der *Denial-of-Service-Angriff* (DoS). Dabei versucht der Angreifer, das Opfer-System oder -Netzwerk derartig zu überlasten, dass der angebotene Dienst (in der Regel Webanwendungen) nicht mehr für reguläre Anfragen oder Zugriffe erreichbar ist. DoS-Angriffe kommen in ganz verschiedenen Varianten vor. Im Internet wird häufig ein *Distributed-Denial-of-Service-Angriff* (DDoS) durchgeführt, wobei Hunderte oder sogar Tausende Systeme zentral gesteuert werden und synchronisiert einen Angriff starten (sogenannte Botnetze).

1.4 Ethical Hacking

Sie lernen in diesem Buch eine ganze Menge über das Hacking. Dieses Wissen können Sie für die verschiedensten Zwecke einsetzen. An dieser Stelle möchten wir jedoch noch einmal ganz ausdrücklich an Ihren ethischen Kompass appellieren!

Was du nicht willst, das man dir tu' ...

Das Ziel dieses Buches ist *offensive IT-Sicherheit*. Das bedeutet, dass Sie als jemand, der sich mit den Methoden und Techniken der bösen Jungs (und Mädels) auskennt, Ihr Wissen nutzen, um die Sicherheit von Computersystemen zu erhöhen, indem Sie deren Schwachstellen aufdecken und helfen, diese zu beseitigen. Dies wird als *Ethical Hacking* bezeichnet. Es dient ausschließlich der Sicherheit von Computersystemen und bezeichnet den verantwortungsvollen Umgang mit dem Knowhow des Hackings.

Als Ethical Hacker verpflichten Sie sich, Schaden von Computersystemen abzuwenden und niemals absichtlich zu verursachen. Sie handeln nach dem Motto: »Was du nicht willst, das man dir tu', das füg' auch keinem anderen zu!«

Lernen Sie so viel über das Hacking wie möglich und seien Sie immer neugierig – doch die Freiheit des einen hört dort auf, wo die Freiheit des anderen eingeschränkt wird! Greifen Sie niemals ohne schriftliche Genehmigung und eindeutige Auftragsklärung fremde Systeme an. Das Wissen über theoretische und praktische Hacking-Technologien verpflichtet. So wie ein Kampfsportler seine Fähigkeiten nur im Ring bzw. auf der Matte und nicht auf der Straße anwenden darf, so bleibt ein Ethical Hacker immer im ethischen und rechtlichen Rahmen des Erlaubten. Gutes Stichwort, dazu gibt es noch etwas Wichtiges zu erläutern.

Der Hacker-Paragraf

Im Jahr 2007 wurde im Rahmen der »Strafvorschriften zur Bekämpfung der Computerkriminalität« der Paragraf 202c des Strafgesetzbuches (StGB) eingeführt. Er lautet folgendermaßen:

- (1) Wer eine Straftat nach ∫ 202a oder ∫ 202b vorbereitet, indem er
- Passwörter oder sonstige Sicherungscodes, die den Zugang zu Daten (∫ 202a Abs. 2) ermöglichen, oder
- 2. Computerprogramme, deren Zweck die Begehung einer solchen Tat ist,

herstellt, sich oder einem anderen verschafft, verkauft, einem anderen überlässt, verbreitet oder sonst zugänglich macht, wird mit Freiheitsstrafe bis zu zwei Jahren oder mit Geldstrafe bestraft.

(2) §149 Abs. 2 und 3 gilt entsprechend.

Das umfasst grundsätzlich auch die Hacker-Tools, deren sich nicht nur die bösen Jungs, sondern auch Administratoren und Sicherheitsbeauftragte bedienen, um die Sicherheit von Computersystemen und -netzwerken zu erhöhen. Bevor Sie jetzt jedoch aus rechtlichen Bedenken dieses Buch zuschlagen und sich dem Fernsehprogramm widmen, dürfen wir Sie beruhigen: Auch wenn der Wortlaut hier leider sehr schwammig ist und eine weitgefasste Auslegung zulassen würde, so dient der Paragraf seinem Inhalt nach nur der Vereitelung von Straftaten.

Die bisherige Rechtsprechung zeigt, dass die Verwendung dieser Tools zur Erhöhung der Sicherheit von IT-Infrastrukturen keine Strafverfolgung nach sich zieht. Dennoch bleibt eine gewisse rechtliche Unsicherheit. Der entsprechende Wikipedia-Artikel ist sehr aufschlussreich und einen Blick wert: https://de.wikipedia.org/wiki/Vorbereiten_des_Ausspähens_und_Abfangens_von_Daten. Sichern Sie sich beim Hacking bzw. Penetration Testing in fremden Umgebungen immer schriftlich und umfangreich ab, indem Sie Art und Umfang Ihrer Tätigkeit (bzw. des Penetrationstests) ganz genau beschreiben und anschließend auch ausführlich dokumentieren.

1.5 Der Certified Ethical Hacker (CEHv12)

Dieses Buch versteht sich als eine fundierte, praxisorientierte Einführung in das Thema »Ethical Hacking«. Es ist an die Inhalte der Prüfung zum *Certified Ethical Hacker* (CEHv12) angepasst und stellt somit eine wertvolle Ressource für Ihre Vorbereitung auf das Examen dar. Auch wenn der Fokus nicht primär auf der Prüfungsvorbereitung liegt, werden wir im Laufe des Buches immer wieder Hinweise zur Prüfung geben. An dieser Stelle möchten wir Ihnen einmal kurz den CEH vorstellen.

1.5.1 Was steckt dahinter?

Der Certified Ethical Hacker ist eine herstellerunabhängige Zertifizierung, die vom EC-Council (www.eccouncil.org) entwickelt und angeboten wird. Dahinter verbirgt sich eine Organisation, die sich auf Zertifizierungen im Hacking- und Security-Bereich spezialisiert hat.

Der CEH ist mittlerweile in der Version 12 verfügbar (siehe hierfür https://www.eccouncil.org/cybersecurity-exchange/ethical-hacking/cehv12-new-learning-framework/). Er stellt eine anspruchsvolle Basiszertifizierung für angehende Ethical Hacker und Penetrationstester dar, die durch weitergehende Zertifizierungen ergänzt wird. So steht seit dem CEHv10 optional eine ergänzende CEH-Practial-Zertifizierung zur Verfügung. Dabei handelt es sich um eine praktische Prüfung, bei der der Kandidat seine Hacking-Kenntnisse in einer praxisnahen Laborumgebung unter Beweis stellen muss. Inzwischen führen diese beiden Prüfungen zusammen zum CEH Master, um den Mehrwert hervorzuheben (https://www.eccouncil.org/train-certify/ceh-master/).

Wer sich darüber hinaus noch weiter in den professionellen Bereich begeben möchte, kann über den EC-Council Certified Penetration Testing Professional (CPENT) den nächsten Schritt gehen und auch die Expert-Level-Zertifizierung zum Licensed Penetration Tester (LPT) absolvieren, der allerdings hohe Einstiegshürden aufweist. Mittlerweile bietet das EC-Council eine Vielzahl von Zertifizierungen und Zertifizierungspfaden an.

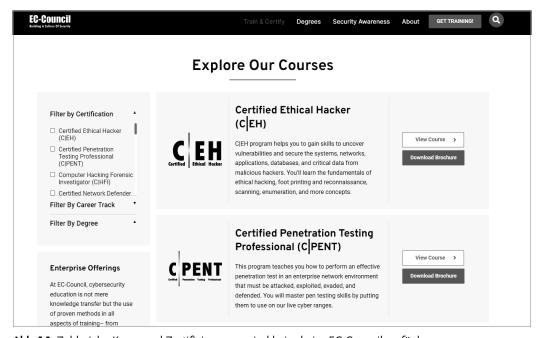


Abb. 1.1: Zahlreiche Kurse und Zertifizierungen sind beim beim EC-Council verfügbar.

Das Curriculum des CEHv12 umfasst insgesamt 20 Module, deren Inhalte in diesem Buch abgedeckt sind. Es wird ein breites Themen-Spektrum mit diversen Konzepten und unzähligen Tools abgearbeitet, wobei es hauptsächlich um Konzepte und Technologien geht und weniger darum, alle der vorgestellten Tools bis ins Detail zu beherrschen. Den Prüfling erwartet ein intensives Studium,

Grundlagen Hacking und Penetration Testing

das ein hohes Engagement und intensive Einarbeitung voraussetzt, um alle behandelten Themen in ausreichender Tiefe zu beherrschen.

Neu im Angebot des CEHv12 sind eine höhere Praxisorientierung und Unterstützung nach der eigentlichen Prüfung. ECCouncil nennt das »Learning Framework« und unterteilt das Lernsystem in vier Stufen:

- Learn: Der Teilnehmer absolviert den Kurs oder lernt im Rahmen des Online-Kurses.
- Certify: Der Teilnehmer absolviert die Prüfung.
- Engage: Der Teilnehmer kann seine Skills in Capture-The-Flag-Umgebungen (CTF) praktisch trainieren
- Compete: Im sogenannten »Hackerverse« werden monatliche CTF-Challenges bereitgestellt, in denen die Kandidaten gegeneinander antreten und Punkte im Leaderboard sammeln können.

Insgesamt wurde das Angebot damit deutlich aufgewertet.

1.5.2 Die CEHv12-Prüfung im Detail

Zur CEHv12-Prüfung werden Sie unter einer der folgenden Bedingungen zugelassen:

- 1. Sie absolvieren einen der offiziellen (und nicht gerade günstigen!) CEH-Kurse. Damit sind Sie automatisch qualifiziert für die Prüfung.
- Sie reichen ein »Egilibility Form« (ein Formular für die Zulassung zur Prüfung) ein und weisen nach, dass Sie mindestens zwei Jahre Erfahrung auf dem Gebiet der IT-Sicherheit haben. Diese Zulassungsprüfung kostet Sie derzeit 100 Dollar – unabhängig vom Ausgang der Prüfung.

Im Gegensatz zum Themenspektrum und dem Inhalt des CEH-Curriculums ist die Prüfung derzeit eher geradlinig gehalten:

Anzahl der Fragen: 125

Maximale Testdauer: vier Stunden

■ Test-Format: Multiple Choice mit nur einer richtigen Antwort

■ Test wird angeboten über: VUE-Testcenter oder ECC-Online-Examen

■ Test-Nummer: 312-50

Es gibt eine Aufschlüsselung in Themenkomplexe und deren Schwerpunkte, aber diese wird in regelmäßigen Abständen geändert. Die Prüfung wirkte in der Vergangenheit mitunter unausgeglichen. Ein bisher überdimensionierter Schwerpunkt lag auf Nmap-Befehlen und auf kryptografischen Konzepten. Dies ist jedoch keine Garantie für Ihren Prüfungszeitpunkt. Von daher empfehlen wir Ihnen, sich im Internet in einschlägigen Foren Informationen zur Prüfung einzuholen, wenn Ihr Prüfungszeitpunkt konkret wird.

Unter dem Strich ist die Zertifizierung zum CEH eine gute Ergänzung zur Schärfung Ihres Profils und kann Ihre Karrierechancen deutlich verbessern. Sie ist allerdings mit derzeit 950 bzw. 1200 Dollar sehr teuer. Der Preis ist abhängig davon, ob Sie die Prüfung im ECC Exam Center oder in einem VUE-Prüfungscenter absolvieren möchten.

Sie sollten insbesondere in folgenden Szenarien über eine CEH-Zertifizierung nachdenken:

■ Sie möchten zukünftig als Penetrationstester arbeiten und benötigen einen Nachweis Ihrer Qualifikation.

- Ihre Tätigkeit liegt im IT-Security-Bereich und Sie möchten Ihr Einsatzgebiet erweitern.
- Sie arbeiten als Security Analyst und möchten Ihr Wissen zertifizieren.

Wir halten die Zertifizierung für ein gutes Fundament für den Einstieg in eine Karriere als Ethical Hacker und Penetrationstester. Um aus diesem Buch das Maximum herauszuholen, ist jedoch die Prüfung zum CEH keine Voraussetzung. Trotzdem werden wir immer wieder auf die CEH-Prüfung zurückkommen und Tipps und Prüfungshinweise geben.

1.6 Die Schutzziele: Was wird angegriffen?

Distanzieren wir uns für einen Moment von unserer Hacker-Rolle und setzen die Brille derjenigen auf, die Computersysteme und deren Daten schützen müssen. Denn Hacking und Penetration Testing dient aus Sicht der Offensive Security zur Absicherung der Systeme. Betrachten wir also den Blickwinkel des Security-Verantwortlichen einer Organisation.

Die IT-Sicherheit definiert drei grundlegende Schutzziele, die durch Angriffe auf IT-Systeme bedroht werden. Sie werden mit C I A abgekürzt. Dies steht in diesem Fall nicht für Central Intelligence Agency, sondern ist eine Abkürzung für:

- Confidentiality = Vertraulichkeit
- Integrity = Integrität
- Availability = Verfügbarkeit

Manchmal wird ein viertes Schutzziel, die **Authenticity** (= Authentizität) definiert. Diese dient auch der **Non-Repudiation**, was etwas hölzern als *Nicht-Abstreitbarkeit* übersetzt wird. Dieses Thema wird aber oft im Schutzziel **Integrität** enthalten gesehen.

Tipp: Kompromittierte Systeme sind per se nicht mehr sicher

Unter dem Strich möchten die Sicherheitsverantwortlichen hauptsächlich sicherstellen, dass die Daten und Systeme nicht *kompromittiert* werden. Bei einem kompromittierten System kann der Eigentümer sich nicht mehr sicher sein, dass die darauf enthaltenen Daten unverändert bzw. nach wie vor vertraulich sind und die korrekte Funktion der Dienste noch gegeben ist. Ein kompromittiertes System sollte meistens von Grund auf neu aufgesetzt werden.

Umgekehrt ist es also das Ziel von Hackern, Computersysteme zu kompromittieren und damit ganz oder teilweise unter ihre Kontrolle zu bringen. Eine Ausnahme stellen die destruktiven *Denial-of-Service-Angriffe* dar, bei denen es nur darum geht, dass das gesamte System oder Teile des Systems nicht mehr funktionieren.

Kaum zu glauben, dass sich der Schutzbedarf von Computersystemen auf die oben genannten drei bzw. vier Schutzziele herunterbrechen lässt. Sehen wir uns daher die einzelnen Schutzziele aus Sicht der IT-Sicherheit einmal im Detail an:

1.6.1 Vertraulichkeit

Es gibt Daten, bei denen ist es dem Eigentümer egal, ob sie öffentlich zugänglich sind oder nicht. Oftmals ist es aus Sicht des Eigentümers sogar wünschenswert, wenn diese Daten Beachtung finden. Hierzu zählen zum Beispiel:

- Unternehmensadresse(n): Zumindest die meisten Unternehmen leben davon, gefunden zu werden.
- Marketing-Materialien: Stellen Sie sich vor, ein Unternehmen erstellt Werbespots, veröffentlicht diese aber nicht ... das ginge dann ziemlich am Sinn vorbei.
- Produkt-Beschreibungen: Soll das Produkt verkauft werden, müssen potenzielle Käufer einen Einblick in die Eigenschaften des Produkts erhalten können, z.B. in Form eines Downloads von PDF-Dateien von der Website.
- White-Paper: Diese Übersichtsdokumente enthalten Erläuterungen zu Technologien, Fallstudien und Ansätze für Problemlösungen. Sie dienen der Öffentlichkeitsarbeit.
- Give-Aways: Kleine Geschenke erhalten die Freundschaft. Kostenlose Downloads oder klassische Geschenke, wie Kugelschreiber oder Tassen, erhöhen die Kundenbindung.

Die obige Aufzählung ist nur exemplarisch. Es gibt noch jede Menge weiterer Informationen, die öffentlich zugänglich sind und es aus der Sicht des Eigentümers auch sein sollen.

Andererseits sind die meisten Daten und Informationen von Personen, Unternehmen und Organisationen schützenswert und sollten oder dürfen der Öffentlichkeit nicht zugänglich gemacht werden. Eine Veröffentlichung bedeutet im besten Falle Image-Schaden und im schlimmsten Fall den Untergang des Unternehmens.

Stellen Sie sich vor, ein Unternehmen entwickelt ein neues, hoch-innovatives Produkt, mit dem es eine Alleinstellung auf dem Markt anstrebt. Alle finanziellen Ressourcen werden in diese Entwicklung gesteckt. Leider gelingt es einem Hacker, die Pläne und alle Detailinformationen des Produkts zu stehlen und einem anderen Unternehmen zukommen zu lassen, das das Produkt schneller fertigstellt und auf den Markt bringen kann. Da kann unser Unternehmen dann vermutlich dichtmachen. Übrigens fällt dieser Vorfall unter die Rubrik *Wirtschaftsspionage* und ist eine der am weitesten verbreiteten und lukrativsten Tätigkeiten von Black Hats und staatlich unterstützten Hackern.

Die Vertraulichkeit von Daten kann auch aus Datenschutzgründen notwendig sein. So müssen personenbezogene Daten von Kunden eines Unternehmens unbedingt vor unbefugtem Zugriff geschützt werden. Eine Veröffentlichung von Kundendaten geht in der Regel mit einem enormen Image-Schaden einher und kann auch für jeden einzelnen Kunden sehr teuer werden, wenn diese Daten dazu geeignet sind, der jeweiligen Person oder Organisation zu schaden. Dies ist z.B. bei Kreditkartendaten der Fall. (So geschehen 2011 bei Sonys Playstation Network.) Auch die Veröffentlichung von Patientendaten ist hochkritisch.

Die Vertraulichkeit ist also für viele Daten essenziell. Da nicht alle Daten den gleichen Schutzbedarf haben, werden oftmals Schutzklassen bzw. Sicherheitsstufen (z.B. öffentlich, sensibel, geheim, Top Secret) definiert, denen die jeweiligen Daten zugeordnet werden. In Deutschland existiert hierzu mit DIN 66399 sogar eine Norm.

Je nach Schutzklasse und Sicherheitsstufe wird in diesem Zusammenhang der jeweilige Sicherheitsbedarf festgelegt. Je höher, desto mehr und umfangreichere Sicherheitsmechanismen werden zum Schutz der Daten bereitgestellt und desto strenger sind die Kontrollen. Dies erklärt andererseits auch, warum (bösartige) Hacker insbesondere von den besonders geschützten Daten angezogen werden wie die Motten vom Licht.

Auf der anderen Seite gibt es für alle relevanten Daten immer auch Personen, die auf die jeweiligen Daten zugreifen müssen. Es ist also zum einen notwendig, die autorisierten Zugriffe festzulegen, und zum anderen, dafür zu sorgen, dass nicht-autorisierte Zugriffe unterbunden werden. Dabei erhält ein Benutzer oder eine Benutzergruppe in der Regel eine eindeutige Kennung (ID) und eine

Möglichkeit, sich zu authentisieren. Ist seine *Authentizität* festgestellt, erhält er Zugriff auf diejenigen Daten, für die er *autorisiert* ist. In Abschnitt 1.6.4 gehen wir weiter in die Details der Authentisierung.

Schutzmaßnahmen

Die Maßnahmen zur Sicherstellung der Vertraulichkeit können ganz unterschiedlich aussehen und auf unterschiedlichen Ebenen ansetzen. Typische Sicherheitssysteme in Computernetzwerken sind:

- Firewalls: Klassisches Instrument zur Steuerung von Netzwerk-Traffic und Verhinderung von unerwünschter Kommunikation.
- Virenschutzsysteme: Auch Antivirus-Systeme (kurz: AV) genannt. Dienen zum Verhindern von *Malware* (bösartiger Software).
- Intrusion-Detection/Prevention-Systeme: Kurz: IDS/IPS, dienen der Erkennung von Angriffsmustern und im Falle von IPS der automatischen Abwehr des Angriffs.
- Application Gateways: Analysieren die Kommunikation auf Protokollebene bis in die Details und können fehlerhafte und unerwünschte Kommunikation erkennen und blockieren.
- Zugangskontrollsysteme: Sowohl physische als auch logische Systeme dienen dazu, den Zugriff auf zu schützende Daten auf die autorisierten Personen zu beschränken.

Die wohl wichtigste Maßnahme zur Sicherstellung der Vertraulichkeit im Rahmen der Netzwerk-Kommunikation ist die *Verschlüsselung*. Sie stellt sicher, dass ein Angreifer den Inhalt einer Kommunikation nicht erkennen kann.

Vorsicht: Verschlüsselung verhindert nicht Veränderung

Bei einem *Man-in-the-Middle-Angriff* positioniert sich der Angreifer zwischen den Kommunikationspartnern und übernimmt unbemerkt jeweils stellvertretend für den anderen die Kommunikation. Beide Kommunikationspartner glauben, dass sie mit dem jeweils anderen kommunizieren, während der Angreifer jedes Datenpaket abfangen, analysieren, ggfs. verändern und dann an den echten Empfänger weiterleiten kann. Die Verschlüsselung verhindert, dass der Angreifer die Daten entziffern kann, jedoch nicht, dass sie verändert weitergeleitet werden.

Um sicherzustellen, dass die gesendeten Daten unverändert beim Empfänger ankommen oder auf einem Datenträger abgelegte Daten zwischenzeitlich nicht verändert wurden, müssen wir die *Integrität* der Daten wahren.

1.6.2 Integrität

Es war einmal ein Mitarbeiter, dem von seinem Unternehmen gekündigt wurde. Dieser war ob der Kündigung erzürnt und wollte sich an seinem Unternehmen rächen. Zu diesem Zwecke erlernte er das Hacking und führte eine *Man-in-the-Middle-Attacke* aus, indem er ausgehende Angebotsmails des Unternehmens abfing und verändert an den Adressaten weiterleitete. Immer, wenn das Unternehmen ein Dienstleistungsangebot mit einem guten Preis an einen Interessenten aussendete, veränderte er den Preis derart, dass die Dienstleistung viel zu teuer wäre – statt 1500 Euro las der Interessent nun 15.000 Euro als Gesamtpreis, lachte kurz und wandte sich von diesem Unternehmen ab, um die Dienstleistung bei einem anderen Unternehmen einzukaufen ...

Dem Unternehmen ging viel Geld dadurch verloren und der ehemalige Mitarbeiter erhielt seine Rache. Ende der Geschichte.

Tatsächlich ist die Frage, ob gesendete Daten beim Empfänger unverändert ankommen, oftmals essenziell – dabei geht es nicht immer um Geld. Es gibt populäre Fälle, in denen eine renommierte Software auf dem Server so manipuliert wurde, dass sie auf dem Opfer-System eine sogenannte »Backdoor« installierte, um Angreifern einen unbemerkten Remote-Zugang zum System zu ermöglichen.

Angriffe der oben beschriebenen Art können verhindert werden, wenn es gelingt, die Integrität der Daten sicherzustellen. Wir betrachten also die »Echtheit« der Daten. Das Ziel ist es, Daten vor Manipulationen zu schützen.

Wie bereits dargelegt, können das Dateien sein, die auf einem Server liegen und unbemerkt gegen eine manipulierte Version ausgetauscht, oder Informationen, die bei der Übermittlung manipuliert werden, wie in unserem Eingangsbeispiel.

Es muss sichergestellt werden, dass die Daten, die den Sender verlassen, auch genauso beim Empfänger ankommen und unterwegs nicht verändert oder ausgetauscht werden. Neben veränderten Inhalten kann aber auch der Absender eines Datenpakets manipuliert werden. Hierbei geht es dann um Authentizität, die ebenfalls mit Mitteln der Integrität sichergestellt werden kann.

Schutzmaßnahmen

Um die Integrität von Daten zu gewährleisten, kommt oft ein sogenannter *Hashwert* zum Einsatz. Das ist eine mathematische Funktion, die auf eine Nachricht oder eine Datei angewendet werden kann. Dabei wird die Original-Nachricht als Eingangswert von der Hash-Funktion verarbeitet. Daraus entsteht eine immer gleich lange Kombination aus Zeichen, das ist der Hashwert. Von diesem lässt sich nicht auf den Inhalt der Nachricht zurückschließen, aber er identifiziert diese ganz genau.

Wie der Fingerabdruck eines Menschen eine Person identifiziert, aber keinerlei Informationen zu Größe, Gewicht oder Haarfarbe preisgibt, so verschickt der Sender seine Nachricht inklusive Hashwert an den Empfänger. Dabei muss er den Hashwert so schützen, dass der Angreifer diesen nicht unerkannt ändern kann. Dies geschieht z.B. mittels digitaler Signatur.

Der Empfänger wendet dieselbe Hash-Funktion auf die Nachricht an und vergleicht den ermittelten Hashwert mit dem des Senders. Wurde an der Nachricht nur ein einziges Zeichen verändert, stimmt der Hashwert nicht überein. Damit kann der Empfänger die Echtheit der empfangenen Daten überprüfen.

Vorsicht: Die Integritätsprüfung verhindert nicht die Manipulation der Daten!

»Moment mal!«, werden Sie vielleicht sagen: »Mit der Integritätsprüfung will ich doch die Echtheit der Daten sicherstellen?« Jupp! Das können Sie auch – was Sie aber *nicht* können, ist, zu *verhindern*, dass die Daten manipuliert werden. Sie können es lediglich erkennen und entsprechend reagieren. Mehr kann die Integritätsprüfung nicht leisten. Ein kleiner, aber feiner und wichtiger Unterschied.

Was also tun, wenn wir bemerken, dass die Integrität von Daten nicht gewahrt werden konnte? In diesem Fall muss die Nachricht oder Datei verworfen werden, sie ist nicht mehr vertrauenswürdig. Im Fall einer Netzwerk-Kommunikation muss der Absender seine Informationen erneut senden. Dumm nur, wenn die dazu notwendigen Systeme aufgrund eines Angriffs den Dienst versagen.

Dieser Punkt betrifft das dritte Sicherheitsziel, die Verfügbarkeit von Daten in der gewünschten Art und zum gewünschten Zeitpunkt.

Auf das Thema Kryptografie gehen wir aufgrund seiner Bedeutung noch einmal gesondert ein. In Kapitel 5 erfahren Sie viele Details über Verschlüsselungsvarianten, -algorithmen und -verfahren.

1.6.3 Verfügbarkeit

Vielleicht erinnern Sie sich noch an Weihnachten 2014, als die Netzwerke der Spielekonsolen von Sony und Microsoft lahmgelegt wurden? Die neuen Spiele, die zum Fest verschenkt wurden, konnten erst einmal nur begrenzt zum Einsatz kommen, was den Herstellern viel Ärger einbrachte.

Ursache dafür war ein sogenannter *DoS-Angriff* (Denial-of-Service). Dabei versuchen Angreifer, ein System in die Knie zu zwingen, bis es seinen Dienst quittiert. Dies geschieht zum Beispiel durch eine Flut von Anfragen an das Zielsystem oder durch Ausnutzen einer bekannten Schwachstelle, die das System zum Absturz bringt. In diesem Fall reicht manchmal schon ein einziges, entsprechend manipuliertes Datenpaket.

Angreifer versuchen mittels der oben beschriebenen Denial-of-Service-Angriffe (DoS), die Verfügbarkeit von Systemen im Netzwerk und im Internet zu untergraben. Oftmals geschieht dies mit der Brechstange, indem die Opfer-Systeme mit so vielen Anfragen überhäuft werden, dass sie diese nicht mehr verarbeiten können.

Um die Wirksamkeit dieser Angriffe zu erhöhen, werden *Distributed-Denial-of-Service-Angriffe* (DDoS, sprich: Di-Dos) gefahren, bei denen der Angriff von Hunderten oder Tausenden Systemen aus dem Internet stattfindet. Hierzu dienen sogenannte »Botnetze«, bei denen eigentlich harmlose Computer zu einem früheren Zeitpunkt mit einer Software infiziert wurden, die ferngesteuert einen Angriff zu einem gewünschten Zeitpunkt initiiert.

Schutzmaßnahmen

Sich gegen einen DoS- oder DDoS-Angriff zu schützen, ist eine der schwierigsten Angelegenheiten der IT-Sicherheit. Im März 2013 fand aus Rache am Blacklist-Anbieter *Spamhaus* ein DDoS-Angriff statt, der eine Woche dauerte. Initiiert wurde er vom niederländischen Provider Cyberbunker, der sich dagegen wehren wollte, dass Spamhaus diverse seiner Kunden auf die schwarze Liste (Blacklist) gesetzt hatte, weil diese Spam und anderen unerwünschten Traffic erzeugt hatten. Der DDoS-Angriff war derart heftig, dass ein nicht unerheblicher Teil des Internets davon betroffen war und es auch andernorts zu Leistungseinbußen kam.

Für viele Unternehmen und Organisationen ist die Verfügbarkeit des Computernetzwerks und seiner Systeme essenziell. Daher werden diverse Maßnahmen ergriffen, um dies sicherzustellen. Hierbei können verschiedene Technologien zum Einsatz kommen, zum Beispiel:

- High Availability (HA): Auch hierbei werden redundante Systeme bereitgestellt, die entweder parallel aktiv oder im Aktiv/Passiv-Modus arbeiten, also die Funktion sofort übernehmen können, wenn das Hauptsystem ausfällt. Bei HA ist es nicht unbedingt erforderlich, dass die Systeme als Cluster arbeiten.
- Clustering: Dabei werden mehrere gleichartige Systeme zu einem Verbund zusammengeschlossen. Fällt eines oder sogar mehrere dieser Verbundsysteme aus, können die anderen die Funktion trotzdem aufrechterhalten. Clustering unterscheidet sich von High Availability insofern, als es die Bereitstellung eines gemeinsamen Speichers erfordert, *Quorum* genannt.

■ Loadbalancing: Dahinter versteckt sich das Konzept, die Anfragen von Client-Systemen automatisch nach bestimmten Kriterien auf verschiedene, gleichartige Systeme zu verteilen, um die Last aufzuteilen.

Es existieren diverse weitere Technologien speziell zur Vermeidung von DDoS-Angriffen, wie z.B. Scrubbing-Center und Content-Delivery-Netzwerke. Im Internet existieren Dienstanbieter, die sich auf die Erhaltung der Verfügbarkeit der Systeme spezialisiert haben. Wir kommen in Kapitel 22 DoS- und DDoS-Angriffe darauf zurück.

1.6.4 Authentizität und Nicht-Abstreitbarkeit

Was passiert hinter den Kulissen, wenn Sie sich an einem Computer anmelden? Sie geben Ihren Benutzernamen an, tippen Ihr Kennwort ein und bestätigen diese Eingabe. Im Hintergrund prüft der Computer nun, ob er Sie kennt. Das ermittelt er anhand der Benutzer-ID, in diesem Fall Ihrem Benutzernamen. Dazu existiert in Windows-Systemen ein sogenanntes Benutzerkonto. Anschließend vergleicht er das für Ihr Benutzerkonto hinterlegte Passwort mit dem eingegebenen (in der Regel vergleicht er die Hashwerte, da das Passwort aus Sicherheitsgründen nicht direkt hinterlegt ist).

Passt alles zusammen, sind Sie authentifiziert. Das bedeutet nichts anderes, als dass der Computer Ihnen Ihre Identität glaubt und Sie für diejenige Person hält, für die Sie sich ausgeben. An dieser Stelle kommt immer auch die Autorisierung ins Spiel: Durch die Vergabe von Zugriffs- und Systemrechten erhalten Sie nun die Möglichkeit, in einer festgelegten Art auf bestimmte Daten zuzugreifen, z.B. nur lesend (read-only) oder lesend oder schreibend. Auch die Verwendung von Programmen und der Zugriff auf die Systemkonfiguration sind von Ihren Rechten abhängig. Ein Administrator darf hier deutlich mehr (im Zweifel alles) als ein nicht-privilegierter Benutzer.

Neben der Autorisierung dient die Authentizität bzw. Authentisierung in bestimmten Situationen auch der *Nicht-Abstreitbarkeit* (engl. *Non-Repudiation*). Geben Sie z.B. über das Internet eine Bestellung auf und behaupten später, dass Sie das gar nicht getan hätten, so streiten Sie die Bestellung ab und der Auftragnehmer hat das Beweisproblem. Gerade bei Geschäftsbeziehungen, die über das Internet laufen, spielt dies eine große Rolle.

Ziel der Nicht-Abstreitbarkeit ist der Nachweis, dass eine Nachricht mit einem bestimmten Inhalt tatsächlich von der Person gekommen ist, die als Absender angegeben ist. Dies wird durch ähnliche Methoden erreicht, wie sie bei der Sicherstellung der Integrität eingesetzt werden.

Schutzmaßnahmen

Eine große Rolle spielen hier Hashwerte als Prüfsummen und ein Konzept namens digitale Signatur oder elektronische Unterschrift. Durch die digitale Signatur kann eindeutig nachgewiesen werden, dass eine Nachricht von einem bestimmten Absender stammt. Im Zusammenspiel mit der Integritätsprüfung kann auch der Inhalt verifiziert werden, sodass eine Nicht-Abstreitbarkeit erreicht wird. Dadurch werden Geschäftsbeziehungen im Internet glaubwürdig. Gelingt es einem Angreifer, diese digitale Signatur oder die Hashwerte zur Integritätsprüfung zu fälschen, wiegt sich der Empfänger einer Nachricht in falscher Sicherheit. Im Rahmen von Kapitel 5 Kryptografie und ihre Schwachstellen nennen wir Ihnen effektive Methoden, Ihre Integrität und Authentizität zu schützen.

1.6.5 Die Quadratur des Kreises

Sind Sie verantwortlich für die IT-Sicherheit, sollten Sie immer die oben genannten Schutzziele im Auge behalten und sich entsprechend schützen.

Bei allem Sicherheitsbewusstsein, das wir bei Ihnen im Laufe dieses Buches verstärken möchten, dürfen Sie allerdings nie das Verhältnis zwischen Sicherheit, Funktionalität und Bedienbarkeit außer Acht lassen.

Je nachdem, wo Sie Schwerpunkte setzen, verlagert sich die Balance Ihrer Computersysteme. Natürlich können Sie die Sicherheit zu 100 % sicherstellen – indem Sie die Systeme abschalten und niemandem zugänglich machen. In diesem Fall würden Funktionalität und Benutzbarkeit auf 0 % reduziert. Und dies ist sicherlich nicht zielführend.

Die anderen Extreme bringen jedoch auch Probleme mit sich: Die Benutzbarkeit zu maximieren, führt in jedem Fall zu vermehrten Sicherheitslücken. So könnten Sie z.B. auf Zugangskontrolle verzichten und jedem Vollzugriff auf alle Systeme und Daten geben. Dass das ebenfalls nicht zum gewünschten Gesamtergebnis führt, müssen wir nicht weiter ausführen.

Das bedeutet letztlich, dass Sie als Sicherheitsbeauftragte(r) manchmal Kompromisse eingehen müssen, die gegen das Sicherheitsziel sprechen. Wenn die Funktionen zu sehr eingeschränkt sind oder sich Ihr System nicht mehr effizient bedienen lässt, haben Sie auch nichts gewonnen. Versuchen Sie, einen gesunden Mittelpunkt im Inneren des Dreiecks zu finden.

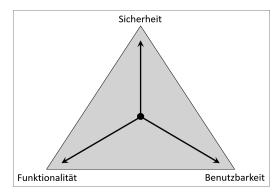


Abb. 1.2: Immer auf das Verhältnis achten

Welche Balance das Optimum in der jeweiligen Umgebung darstellt, lässt sich pauschal nicht beantworten. So wird eine Bank z.B. naturgemäß sehr viel mehr Wert auf Sicherheit legen – zur Not eben auch auf Kosten der Benutzbarkeit (Usability) und Funktionalität. Mittlerweile ist ja das Einloggen in den Online-Bankaccount oft schon ein dreistufiger Authentifizierungsprozess und teilweise recht nervig für den Kunden.

Auf der anderen Seite gibt es Unternehmen, die von der Kreativität und Individualität ihrer Mitarbeiter leben. Hier könnte es notwendig sein, vielen Mitarbeitern weitgehende Rechte bis hin zu Administratorprivilegien einzuräumen, damit diese ihre Jobs optimal ausfüllen können. Dies ist zwar ein Horrorszenario für jeden Security-Beauftragen, aber wenn die Alternative lautet, dass das Unternehmen pleitegeht, weil die Mitarbeiter nicht vernünftig arbeiten können, müssen entsprechende, aus Security-Sicht manchmal schmerzhafte, Kompromisse gefunden werden.

Tipp: Das Prinzip der Least Privileges und das Vier-Augen-Prinzip

Grundsätzlich gilt: Jeder Benutzer erhält so viel Rechte wie nötig und so wenig wie möglich, um seine Tätigkeit ausüben zu können! Führt ein Recht zu einem Sicherheitsproblem, suchen Sie

nach Alternativen: Ist es z.B. möglich, bestimmte, sicherheitskritische Prozesse durch nur einen oder wenige Mitarbeiter ausführen zu lassen, anstatt durch jeden einzelnen Benutzer? Sorgen Sie im Zweifel auch immer für ein Vier-Augen-Prinzip: Ein Mitarbeiter beantragt einen Prozess, ein zweiter genehmigt diesen und der dritte führt ihn schließlich aus. Das reduziert den Missbrauch von privilegierten Funktionen, wie z.B. das Ändern von Firewall-Regeln.

1.7 Systematischer Ablauf eines Hacking-Angriffs

Einer der Haupt-Unterschiede zwischen Scriptkiddies und echten Hackern oder auch Pentestern ist das systematische Vorgehen, das bei den Scriptkiddies fehlt. Ein professioneller Hacking-Angriff umfasst eine Reihe von Phasen, die aufeinander aufbauen. Es gibt verschiedene Ansätze, die leicht voneinander abweichen, aber inhaltlich weitgehend denselben Weg verfolgen. Abbildung 1.3 zeigt eine Übersicht über die einzelnen Etappen, wie sie vom CEH-Curriculum unterschieden werden.

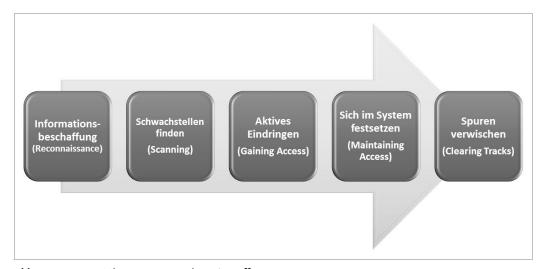


Abb. 1.3: Prozess-Schritte eines Hacking-Angriffs

Hierbei ergibt sich jedoch eine Begriffsüberschneidung, da die zweite Phase, das *Scanning*, in den meisten Quellen zur aktiven *Reconnaissance-Phase* hinzugerechnet wird. An dieser Stelle gibt es diverse Begrifflichkeiten zu unterscheiden. Wir werden das gleich noch etwas genauer erläutern.

Auch wenn die Vorgehensweise von Black Hat Hackern und White Hat Hackern grundsätzlich gleich ist, so sind die Phasen bei einem realen Angriff noch etwas umfangreicher und aggressiver. Schauen wir uns das einmal an.

1.7.1 Phasen eines echten Angriffs

Im Rahmen eines professionellen Hacking-Angriffs versucht der Angreifer, sein Ziel systematisch und nachhaltig zu erreichen. So hat er z.B. nichts gewonnen, wenn er zwar die gesuchten Daten findet und stehlen kann, dabei aber erwischt wird. Daher ist es notwendig, mit Bedacht vorzugehen und möglichst wenig Spuren zu hinterlassen. Zudem kann der Angreifer die Chance nutzen, im

Rahmen eines erfolgreichen Angriffs eine Hintertür einzubauen, die ihm auch zukünftig Zugang zu dem betreffenden System sichert.

Für einen erfolgreichen Angriff wird der Hacker in der Regel eine bestimmte Reihenfolge seiner Handlungen verfolgen, um sich seinem Ziel schrittweise zu nähern und nach erfolgreichem Angriff auch wieder unbemerkt abtauchen zu können. Betrachten wir die einzelnen Schritte einmal genauer:

Informationsbeschaffung (Reconnaissance)

Dies ist der erste Schritt für die Vorbereitung auf einen Angriff. Sammeln Sie möglichst viele Informationen über Ihr Ziel. Je mehr Informationen Sie haben, umso gezielter können die nächsten Schritte gewählt werden. Das spart nicht nur Zeit, sondern erhöht auch die Chance, Schwachstellen zu finden. Wir unterscheiden zwischen zwei Phasen:

- Passive Discovery: In dieser Phase versuchen Sie, Informationen über Ihr Ziel (also die Person oder das Unternehmen) zu erlangen, ohne direkt mit ihm in Kontakt zu treten. Dies umfasst z.B. Google-Suchen, Social-Media-Analysen und andere Recherchen über das Ziel, kann aber auch bedeuten, dass Sie das Gebäude des betreffenden Unternehmens beobachten, um die Verhaltensweisen und Gewohnheiten der Mitarbeiter und des Wachpersonals zu erkunden. Passive Discovery umfasst damit auch einen Teil des Social Engineerings (grob ausgedrückt ist das alles, was primär mit Menschen statt Computern zu tun hat, genauer wird dieses Thema in Kapitel 20 Social Engineering behandelt) sowie das sogenannte Dumpster Diving, bei dem der Angreifer versucht, aus dem Müll des Opfers relevante Informationen zu erlangen. Dies kann z.B. erfolgreich sein, wenn wichtige Dokumente nicht sachgerecht entsorgt werden.
- Active Discovery: Jetzt werden Sie als Angreifer konkreter und prüfen die Systeme durch aktives »Anklopfen«. Das heißt, Sie treten bereits mit den Systemen des Opfers in Kontakt. In dieser Phase setzen Sie sich erstmalig der Gefahr aus, entdeckt zu werden. Andererseits können Sie aber auch wichtige Informationen zu den Zielsystemen erlangen, die weitere Angriffsvorbereitungen ermöglichen.

Wichtig: Verschiedene Perspektiven unterscheiden!

Der CEH sieht in der Active-Discovery-Phase noch keine Scanning-Aktivitäten, sondern die Verbindungsaufnahme mit dem Ziel auf anderen Ebenen, z.B. einem Telefonanruf beim Help Desk oder in der IT-Abteilung. Wir betrachten daher die Scanning-Phase formal auch von der Reconnaissance-Phase getrennt, sehen aber inhaltlich das Scanning als Bestandteil der Active-Discovery-Phase.

Schwachstellen finden (Scanning)

Somit geht die Active-Discovery-Phase sozusagen fließend in die Scanning-Phase über. In dieser Phase werden die Zielsysteme genau unter die Lupe genommen. Dabei nutzen Sie als Angreifer die Informationen, die Sie im Rahmen des ersten Schrittes der (passiven) Informationsbeschaffung (Reconnaissance) erlangt haben. Hier kommen Netzwerk-Scanner und -Mapper sowie Vulnerability-Scanner zum Einsatz. Tatsächlich erhöht sich der Grad der Aggressivität des Scans gegenüber dem Active Discovery.

In dieser Phase ermittelt der Angreifer die Architektur des Netzwerks, offene Ports und Dienste, die Art der Dienste, Betriebssysteme, Patchstände, scannt auf bekannte Schwachstellen und Sicher-

heitslücken etc. In dieser Phase steigt die Entdeckungsgefahr weiter, da der Angreifer sehr aktiv und teilweise aggressiv mit den Zielsystemen kommuniziert.

Aktives Eindringen (Gaining Access)

Hier geht es richtig los, denn jetzt versuchen Sie, die gefundenen Lücken auszunutzen und sich mittels entsprechender Exploits unerlaubten Zugriff zu verschaffen. Angriffe gibt es in allen möglichen Varianten, wie Webserver-Attacken, SQL-Injection, Session Hijacking, Buffer Overflow etc. Diese werden wir ausführlich vorstellen und natürlich auch praktisch demonstrieren.

Sich im System festsetzen (Maintaining Access)

Hat der Angreifer sich erst einmal Zugang verschafft, versucht er, den Zugriff auszubauen. Er bemüht sich mittels *Privilege Escalation* um noch mehr Rechte und versucht, das System weitestgehend einzunehmen. Mittlerweile hat er nicht nur Zugang zum System, sondern bestenfalls sogar Administrator-Privilegien. Damit gibt sich ein professioneller Angreifer jedoch nicht zufrieden. Denn an dieser Stelle nutzen Black Hats die Gunst der Stunde, weitere Sicherheitslücken zu schaffen und über entsprechende »Backdoors« dafür zu sorgen, dass sie das Opfer-System jederzeit wieder »besuchen« können.

Das kann auch hilfreich sein, sollte die Lücke, durch die der Angreifer hineingekommen ist, geschlossen werden. Jetzt wird Ihnen vermutlich auch klar, warum Sie einem einmal kompromittierten System nicht mehr trauen können: Als Administrator eines einmal kompromittierten Systems werden Sie keine ruhige Nacht mehr haben, mit dem Hintergedanken, dass der Angreifer evtl. weitere Einfallstore und Zugänge installiert hat.

Spuren verwischen (Clearing Tracks)

In den meisten Fällen entstehen bei einem Hacking-Angriff Spuren, die durch Methoden der Computer-Forensik ausgewertet werden können. Ist der Angriff auf den Hacker zurückzuführen, so ist dessen Karriere schnell vorbei.

In dieser Phase geht es also darum, die Spuren seines (unerlaubten) Tuns möglichst nachhaltig und umfangreich zu verwischen. Hierzu werden Logging-Einträge manipuliert oder gelöscht, Rootkits installiert, die sehr tief im Kernel operieren und das System und dessen Wahrnehmung der Ereignisse manipulieren können, sowie Kommunikationsprotokolle und -wege eingesetzt, die eine Nachverfolgung erschweren.

Nicht immer müssen die Angriffe strikt in dieser Reihenfolge ablaufen. So kann es durchaus sein, dass Sie einen Scan auf ein System laufen lassen, während Sie in der Zwischenzeit in ein anderes einbrechen. Auch macht es Sinn, zwischen den einzelnen Schritten seine Spuren immer wieder zu verwischen, obwohl diese Phase generell erst am Ende der Kette steht. Um allerdings den grundlegenden Ablauf zu verstehen und zu verinnerlichen, ist es wichtig, die Phasen und ihre Reihenfolge zu kennen und ständig im Blick zu haben.

1.7.2 Unterschied zum Penetration Testing

Sie haben vielleicht bemerkt, dass die im vorigen Abschnitt vorgestellten Phasen – gerade die letzten beiden – doch recht »dunkel« anmuten. Und auch wenn das beschriebene Vorgehen weitgehend sowohl für White Hats als auch für Black Hats gilt, so ist der Vorgang beim Penetration Testing im Allgemeinen doch noch ein wenig modifiziert. Dies betrifft insbesondere folgende Punkte:

Vorbereitung

Vor einem Penetrationstest wird sehr genau festgelegt, was die Ziele des Audits sind und in welchem Rahmen der Pentester sich bewegt. Es wird die Aggressivität des Tests festgelegt und die Kommunikation zwischen dem Pentester und dem Auftraggeber geklärt.

Der Auftraggeber wird während des Tests in der Regel in Intervallen über den aktuellen Stand aufgeklärt und über einzelne, geplante Schritte hinsichtlich Zeitraum und Umfang informiert. Dies wird ebenfalls in der Vorbereitungsphase geklärt. Das umfasst auch ggf. gesetzliche Regelungen. Wird das Audit im Rahmen einer *Compliance-Prüfung* durchgeführt, so müssen weitere Rahmenbedingungen und formale Anforderungen erfüllt werden, die vorab zu klären sind. »Compliance« bedeutet Regelkonformität und umfasst die Einhaltung von Gesetzen und Richtlinien. Diverse Unternehmen und Organisationen sind bestimmten Gesetzen unterworfen, die eine entsprechende regelmäßige Prüfung erfordern.

Abschluss und Dokumentation

Während ein echter Angreifer zufrieden ist, wenn er das System kompromittiert und seine Ziele (Datendiebstahl, Sabotage etc.) erreicht hat, muss der Pentester den Auftraggeber bestmöglich unterstützen, um die gefundenen Schwachstellen zu erkennen und zu beseitigen. Daher wird ein umfangreicher Bericht über die Sicherheitslücken, Gefährdungen und Risiken erstellt und ein Maßnahmen-Katalog erarbeitet, der dem Auftraggeber die mögliche Beseitigung der Schwachstellen aufzeigt.

Dabei wird auch die Vorgehensweise des Pentesters detailliert beschrieben, um dem Auftraggeber darzulegen, wie die Informationsbeschaffung und Ausnutzung der Sicherheitslücken erfolgt ist. Zur Dokumentation eines Penetrationstests existieren diverse Tools und Hilfsmittel, die eine Datenbank-gestützte Auswertung ermöglichen. Auf die Details hierzu gehen wir in Kapitel 32 *Durchführen von Penetrationstests* am Ende des Buches ein.

Was ein Pentester nicht macht

Im Rahmen eines Audits wird ein Pentester in der Regel nicht versuchen, sich im System festzusetzen, um zu einem späteren Zeitpunkt erneut in das System einzubrechen. Andererseits ist es natürlich durchaus sinnvoll, zu testen, wie weit der Angreifer kommen würde, um *Backdoors* und andere Schwachstellen zu platzieren. Diese werden jedoch im Rahmen eines Audits in der Regel nicht installiert, um sie später tatsächlich zu nutzen – es bleibt meistens beim »Proof-of-Concept«, also beim Ausloten der Möglichkeiten.

Darüber hinaus wird ein Pentester in der Regel auch keine aggressiven Techniken einsetzen, um seine Spuren zu verwischen. Dies erfordert eine Manipulation diverser wichtiger Subsysteme von Produktivsystemen, einschließlich des Einsatzes von Rootkits, die es ermöglichen, auf Kernel-Ebene elementare Prozesse und Dateien zu manipulieren und zu verstecken.

Dahinter steckt nicht zuletzt die Philosophie, dass die Systeme des Auftraggebers getestet und anschließend *gehärtet* (also sicherer gemacht) werden sollen, nicht jedoch als Spielwiese eines Hackers dienen sollen, um zu schauen, was alles geht. Das gezielte Schwächen eines Produktiv-Systems führt unter Umständen zur Notwendigkeit einer Neuinstallation und ist ein »No-Go« für einen Pentester.

Tipp: Bleiben Sie neugierig und testen Sie Ihre Grenzen aus!

Damit wir uns nicht falsch verstehen: Wir fordern Sie geradezu auf, an die Grenze Ihrer Fähigkeiten zu gehen! Innerhalb Ihres Labornetzes sollten Sie alles, was irgendwie möglich erscheint,

umsetzen und ausprobieren – hier sind Ihnen keine Grenzen gesetzt – virtuelle Maschinen und Snapshots machen es möglich.

Stellen Sie jedoch sicher, dass die von Ihnen angegriffenen Systeme vollständig unter Ihrer eigenen Kontrolle sind und keinerlei Produktivzwecken dienen! In Ihrem abgeschotteten Labor können Sie so viel herumexperimentieren, wie Sie wollen. Aber halten Sie strikt die Regeln ein, wenn Sie ein anderes Netzwerk oder Computersystem im Rahmen eines beauftragten Penetrationstests hacken.

Grundsätzlich gibt es auch spezielle Szenarien, in denen ein Pentester aggressiver vorgeht und bestimmte Black-Hat-Methoden anwendet, wie beispielsweise die Installation einer Backdoor. Dies hängt immer von der Zielstellung bzw. Auftragsformulierung ab. Unter dem Strich muss dies jedoch abgesprochen sein und dem Gesamtziel der Verbesserung der IT-Sicherheit dienen.

1.8 Praktische Hacking-Beispiele

In diesem letzten Abschnitt des Kapitels möchten wir Ihnen noch drei erfolgreiche Hacking-Angriffe vorstellen, um gleich einmal etwas »Praxis« einzubringen und Ihnen eine Vorstellung von »Real-World-Hacks« zu geben.

1.8.1 Angriff auf den Deutschen Bundestag

Am 13. April 2015 wurde ein Angriff auf das Netzwerk des Bundestages bekannt, bei dem diverse, teilweise als *Top Secret* eingestufte, Dokumente gestohlen wurden. Offensichtlich haben sich die Hacker Zugang zu einem Großteil der Systeme des Bundestages verschaffen können, sodass zum einen nicht im Detail nachvollziehbar ist, welche Informationen entwendet und welche Systeme kompromittiert wurden. Zum anderen wurde es dadurch notwendig, einen erheblichen Teil der IT-Infrastruktur neu aufzusetzen, um wieder Vertrauen in die Systeme haben zu können.

Nach den Analysen ist zunächst ein einzelner Computer eines Abgeordneten durch eine E-Mail mit entsprechendem Malware-Anhang oder einem *Drive-by-Download* (ein Schadcode wird automatisch beim Besuchen einer bestimmten Website unbemerkt im Hintergrund heruntergeladen) infiziert worden. So hatten die Angreifer vermutlich eine *Backdoor* (also eine Hintertür im System) installiert, über die sie Zugang zum Opfer-System erlangten.

Von dort aus gelang es den Angreifern mittels gängiger Open-Source-Software (namentlich *mimikatz*, siehe Kapitel 10 *Password Hacking*), Zugriff auf Administrator-Accounts zu erlangen, die ihnen wiederum Zugang zu diversen Systemen des Netzwerks ermöglichten und dazu führten, dass sich die Angreifer frei im Netzwerk des Bundestages bewegen konnten.

Interessant hierbei ist, dass bis zu diesem Zeitpunkt niemand wirklich reagierte: Obwohl sich einige Systeme merkwürdig verhielten, nahm man die Situation noch nicht so richtig ernst. Erst als ausländische Geheimdienste mitteilten, dass ein derartiger Angriffsplan entdeckt wurde, sind die entsprechenden Stellen, unter anderem das Bundesamt für Sicherheit in der Informationstechnik (BSI) involviert worden, um die Sachverhalte aufzuklären.

Das Verblüffende hierbei ist, dass die Angreifer bereits bekannte Schwachstellen und Hacking-Tools eingesetzt haben. Es muss sich also keineswegs um versierte Hacker gehandelt haben – stattdessen wäre es erschreckenderweise auch denkbar, dass hier Scriptkiddies (zugegebenermaßen mit deutlich erweiterten Kenntnissen) am Werk waren!

Unter dem Strich bleibt die Erkenntnis, dass das Netzwerk des Bundestages zum einen unzureichend geschützt war und zum anderen das Sicherheitsbewusstsein der Administratoren ganz offen-

sichtlich nicht ausreichte, um die (durchaus vorhandenen) Symptome des Angriffs rechtzeitig zu erkennen und entsprechend zu handeln. Aufgrund dieser Umstände war es sogar mit relativ einfachen Mitteln und Open-Source-Standard-Tools möglich, derart tief in das Netzwerk des Bundestages einzudringen und sich dort festzusetzen.

1.8.2 Stuxnet – der genialste Wurm aller Zeiten

Im krassen Gegensatz zum Angriff auf den Bundestag wurde 2010 ein Computerwurm entdeckt, der als *Stuxnet* bekannt wurde. Es handelt sich um den höchstentwickelten Wurm, der jemals gefunden wurde. Er nutzt eine Vielzahl von Schwachstellen und kann sogar, wie ein normales Programm, automatisch über das Internet aktualisiert werden.

Stuxnet wurde speziell für den Angriff auf *Simatic S7* entwickelt. Dabei handelt es sich um ein Steuerungssystem der Firma Siemens, das vielfach in verschiedenen Industrieanlagen, wie z.B. Wasserwerken, Pipelines oder aber auch Urananreicherungsanlagen eingesetzt wird.

Letztere schienen auch das Ziel von Stuxnet zu sein, da zunächst der Iran den größten Anteil an infizierten Computern besaß und die Anlagen des iranischen Atomprogramms von Störungen betroffen waren. Durch die Störung der Leittechnik dieser Anlagen sollte wohl die Entwicklung des Atomprogramms gestört und verzögert werden.

Die Entwickler und Auftraggeber von Stuxnet sind bis heute nicht bekannt – selbstverständlich gibt es diverse Gerüchte und Indizien, die an dieser Stelle aber nicht von Belang sind. Entscheidend ist, dass hier kein einzelner Hobbyprogrammierer oder Scriptkiddie am Werk war, sondern eine hochversierte Gruppe professioneller Entwickler. Die Komplexität von Stuxnet legt die Vermutung nahe, dass hier hochspezialisierte Experten an der Arbeit waren und die Entwicklung des Wurms mehrere Monate professioneller Projektarbeit erforderte.

Hinweis: Zusatzmaterial zum Buch online

Mehr Informationen über Stuxnet haben wir in einem Dokument zusammengefasst und zum Download unter www.hacking-akademie.de/buch/member bereitgestellt. Bitte nutzen Sie das Passwort h4ckm3mber für den exklusiven Zugang zum Mitglieder-Bereich unserer Leser.

1.8.3 Angriff auf heise.de mittels Emotet

Auch Malware entwickelt sich weiter und ein neuer Meilenstein in der Evolution war *Emotet*. Dabei handelt es sich um einen sogenannten Banking-Trojaner. Derartige Schadsoftware ist darauf spezialisiert, Zugangsdaten von Online-Banking-Diensten auszuspähen. Emotet ist jedoch erheblich vielseitiger und leistungsfähiger als die meisten derartigen Schadprogramme und wird zudem aktiv weiterentwickelt.

Seit 2018 ist Emotet in der Lage, auch lokale E-Mails auszulesen und somit selbst Mails zu generieren, die scheinbar von bekannten Absendern kommen, mit denen das Opfer kürzlich bereits in Kontakt stand. Durch glaubwürdige Inhalte wird der Benutzer dazu verführt, schädliche Dateianhänge zu öffnen oder auf Links zu klicken, die zu infizierten Servern führen, wodurch sogenannte *Driveby-Downloads* initiiert werden. Diese automatischen Downloads nutzen Browserlücken aus und platzieren Schadcode auf dem Computer des Opfers.

Im Mai 2019 wurde das bekannte Online-Magazin heise de Opfer von Emotet. Es handelte sich um einen ausgeklügelten, mehrstufigen Angriff, der von heise vorbildlich und transparent aufgearbeitet wurde. Die detaillierten Untersuchungsergebnisse wurden veröffentlicht. Sie können unter

www.heise.de/ct/artikel/Trojaner-Befall-Emotet-bei-Heise-4437807.html den gesamten Vorfall in allen Details nachlesen.

1.9 Zusammenfassung und Prüfungstipps

Werfen wir einen kurzen Blick zurück: Was haben Sie gelernt, wo stehen Sie und wie geht es weiter?

1.9.1 Zusammenfassung und Weiterführendes

Sie haben in diesem Kapitel gelernt, was es mit dem Begriff »hacking« bzw. »Hacker« auf sich hat, und haben festgestellt, dass wir hier durchaus genau unterscheiden müssen, z.B. zwischen *Scriptkiddie*, *White Hat, Grey Hat* und *Black Hat* bzw. dem *Cracker*. Weiterhin haben wir Motive und Ziele von Hacking-Angriffen beleuchtet.

Ein ganz elementares Konzept, das Sie sich unbedingt zu Eigen machen sollten, ist das »Ethical Hacking«. Hierbei geht es darum, als White Hat Hacker die Kunst des Hackings einzusetzen, um die Sicherheit von Computersystemen und -netzwerken zu verbessern. Wenn Sie die Zukunft Ihrer Karriere im Ethical Hacking sehen, dann sollten Sie sich überlegen, die Prüfung zum Certified Ethical Hacker zu absolvieren.

Es ist wichtig, beide Seiten zu berücksichtigen. Daher haben wir vorübergehend einen Perspektiv-Wechsel vorgenommen und betrachtet, welche Schutzziele es gibt und wie sie von den IT-Sicherheitsbeauftragen verfolgt werden. Der Abkürzung CIA stehen die englischen Begriffe Confidentiality (Vertraulichkeit), Integrity (Integrität) und Availability (Verfügbarkeit) gegenüber. Dazu kommt in manchen Betrachtungen noch die Authenticity (Authentizität) bzw. die Non Repudiation (Nichtabstreitbarkeit). Beides wird aber häufig auch unter der Integrität zusammengefasst. Die Herausforderung für einen IT-Sicherheitsbeauftragten ist die Sicherstellung der Schutzziele einerseits, ohne andererseits die Benutzerfreundlichkeit und die Funktionalität zu stark einzuschränken – sonst heißt es am Ende: »Operation gelungen, Patient tot!«

Wird das White Hat Hacking im Rahmen eines abgesprochenen Audits durchgeführt, so nennt sich dieser Prozess Penetrationstest, oder in der englischen Form: Penetration Test bzw. kurz: Pentest. Dabei werden die Computersysteme und/oder das Netzwerk des Auftraggebers nach detaillierter Absprache systematisch auf Schwachstellen untersucht. Hierzu bedient sich der Pentester professioneller Hacking-Methoden.

In diesem Zusammenhang haben Sie die Phasen eines Hacking-Angriffs kennengelernt, die aus dem Ausspähen (Reconnaissance), dem Finden von Schwachstellen (Scanning), dem aktiven Eindringen (Gaining Access), dem Festsetzen im Opfer-System (Maintaining Access) sowie der Verwischung der Einbruchsspuren (Clearing Tracks) besteht. Im Rahmen eines Pentests werden einige der Phasen angepasst, da es hier insbesondere um das Aufzeigen und Dokumentieren von Schwachstellen geht.

1.9.2 CEH-Prüfungstipps

In diesem ersten Kapitel sind schon einige wichtige Begriffe und Konzepte enthalten, die in der Prüfung abgefragt werden können. Hierzu zählen die unterschiedlichen Hackertypen, die Schutzziele und die Phasen eines Hacking-Angriffs. Stellen Sie sicher, dass Sie Hacking-Aktivitäten den einzelnen Phasen zuordnen können und dass Sie verstanden haben, welche Schutzziele durch bestimmte Maßnahmen sichergestellt bzw. bedroht werden. Letzteres werden Sie im Laufe dieses Buches immer wieder gegenüberstellen können.

1.9.3 Fragen zur CEH-Prüfungsvorbereitung

Mit den nachfolgenden Fragen können Sie Ihr Wissen überprüfen. Die Fragestellungen sind teilweise ähnlich zum CEH-Examen und können daher gut zur ergänzenden Vorbereitung auf das Examen genutzt werden. Die Lösungen zu den Fragen finden Sie in Anhang A.

- Welcher Hacker-Typ hat beschränkte oder kaum Kenntnisse im Security-Bereich und weiß lediglich, wie einige einschlägige Hacking-Tools verwendet werden?
 - a) Black Hat Hacker
 - b) White Hat Hacker
 - c) Scriptkiddie
 - d) Grey Hat Hacker
 - e) Cracker
- 2. Welche der im Folgenden genannten Phasen ist die wichtigste Phase im Ethical Hacking, die häufig die längste Zeitspanne in Anspruch nimmt?
 - a) Gaining Access
 - b) Network Mapping
 - c) Privilege Escalation
 - d) Footprinting
 - e) Clearing Tracks
- 3. Ein CEH-zertifizierter Ethical Hacker wird von einer Freundin angesprochen. Sie erklärt ihm, dass sie befürchtet, ihr Ehemann würde sie betrügen. Sie bietet dem Ethical Hacker eine Bezahlung an, damit er in den E-Mail-Account des Freundes einbricht, um Beweise zu finden. Was wird er ihr antworten?
 - a) Er lehnt ab, da der Account nicht der Freundin gehört.
 - b) Er sagt zu, da der Ehemann unethisch handelt und die Freundin Hilfe benötigt.
 - c) Er sagt zu, lehnt aber die Bezahlung ab, da es sich um einen Freundschaftsdienst handelt.
 - d) Er lehnt ab und erklärt der Freundin, welcher Gefahr sie ihn damit aussetzt.
- 4. Die Sicherheitsrichtlinie (Security Policy) definiert die Grundsätze der IT-Security in der Organisation. Für einige Bereiche gibt es ggf. Sub-Policys, wie z.B. Computer-Sicherheitsrichtlinie, Netzwerk-Sicherheitsrichtlinie, Remote-Access-Richtlinie etc. Welche drei der im Folgenden genannten Ziele sollen damit sichergestellt werden?
 - a) Availability, Non-repudiation, Confidentiality
 - b) Authenticity, Integrity, Non-repudiation
 - c) Confidentiality, Integrity, Availability
 - d) Authenticity, Confidentiality, Integrity
- 5. Welcher Phase eines Hacking-Angriffs kann die Installation eines Rootkits zugerechnet werden?
 - a) Reconnaissance
 - b) Scanning
 - c) Gaining Access
 - d) Maintaining Access
 - e) Clearing Tracks

6LoWPAN 1111	Public Key 176
802.1x 731	Public-Key-Authentifizierung 178
	Rivest Shamir Adleman (RSA) 180
A	Schlüsselaustausch 176
Access Control List (ACL) 709	auditpol 563, 568
Active Directory (AD) 312	Audit Policies (Windows) 562
Active Discovery 221, 256	Ausführen-Recht (x) 105
Acuretix 856	Autoruns 525
Address Resolution Protocol (ARP) 259, 637	Autostart-Eintrag 524
Address Space Layout Randomization (ASLR) 1007	AV-Signatur 473
	AWS 1147
Ad-hoc-Netzwerk (WLAN) 1020 ADS 489	Azure (Microsoft) 1148
Advanced Message Queuing Protocol (AMQT) 1112	Tibute (Microsoft) II to
AdwCleaner 522	В
airbase-ng 1059, 1060	Backdoor 419, 453 BackTrack 71
aircrack-ng 1029, 1041 AirDroid 1075	Bad Character 994
aireplay-ng 1038, 1040	Baseband-Hack 1072
Airgeddon 1061	
8	Bash Bunny 779
airodump-ng 1033, 1040, 1043, 1047	Beacon Frame (WLAN) 1024
Altamata Data Stugana 480	Best(er) Keylogger 492
Alternate Data Stream 489	Bettercap 661
Amplifying Attack 800 Android 1068	Bildschirmauflösung 102 Bind-Shell 424
	Black-Box-Test 1178
Android Debug Bridge (ADB) 1081	
Android x86 1076	Black Hat 41
Angler 472	Blackhole Exploit Kit 472
Angriffsphasen 56	Blind Hijacking 675
Anonymizer 137	BlueBorne 1123
Anonymous 44	Bluebugging 1074
Antivirus-System (AV) 473	Bluejacking 1074
Anydesk 1075	Bluesnarfing 1074
Any Run 507	BlueStacks 1076
apache2 468	Blue Teaming 1179
Apache-Webserver 843	Bluetooth Low Energy (BLE) 1110
App 1069	Boot-Sektor-Virus 458
ARP-Cache-Poisoning 637	Botnet 454
ARP-Inspection 663	Botnetz 807
ARP-Spoofing 637	Bricking 806
arpspoof 644	Bring Your Own Device (BYOD) 1095
ASP.net 842	Brute-Force-Angriff 392
Asymmetrische Verschlüsselung 175	BSS (Basic Service Set) 1020
Authentizitätsprüfung 178	BSSID (Basic Service Set Identifier) 1024
Diffie-Hellman-Schlüsselaustausch 179	btmp 580
Digital Signature Algorithm (DSA) 181	Buffer Overflow (Pufferüberlauf) 977
Elgamal 180	Bug-Bounty-Programm 874
Private Kev 176	BulkFileChanger 573

bully (WPS-Cracking) 1048	D
Burp Suite 681	Dander Spritz 569
Proxy 683	Darknet 147
Sequencer 686	Data Execution Prevention (DEP) 1008 Datei
C	anzeigen 112
c99 (Webshell) 969	finden 114
C/C++ (Buffer Overflow) 979	Dateimanager 99
Cain & Abel 406	Dateisignaturverifizierung 530
Capsa 518	Datei-Virus 458
Captive Portal (WLAN) 1055	Deauthentication Attack (WLAN) 788, 1037
Capture 594	Debugger 980
Cavity Virus 459	Decompiler 504
CCleaner 158, 455, 522, 576	Deep Web 147
CEHv12-Prüfung 48	Defacing 42
CeWL 400	Default-Passwörter 370
CGI 842	Denial-of-Service-Angriff (DoS-Angriff) 796
ChameleonMini 788	DHCP-Snooping 663
chmod 106	DHCP-Spoofing 641
chntpw 375	Dictionary-Angriffe 393
CIFS 297	Dienst
Clear_Event_Viewer_Logs.bat 571	prüfen 526
Cloud 1141	verwalten 117
CloudGoat 1170	Diffie-Hellman-Schlüsselaustausch siehe Asymmetri-
Clustering 53	sche Verschlüsselung
cmd.exe 419	Digispark Development Board 781
Colasoft Packet Builder 286	Digitale Signatur 54
Command-Injection 961	DirBuster 853
Community Cloud 1145	Directory-Traversal-Angriff 845, 965
Community-String 306	Disassembler 504
Companion-Virus 459	diskpart 373
Compliance 1177	DistCC (Schwachstelle) 430
Computervirus 452, 453	Distributed-Denial-of-Service-Angriff (DDoS-Attacke)
Computerwurm 453, 459	515, 796
Config-Register (Cisco) 379	Distributed-Reflected-DoS-Angriff (DRDoS) 806
Constrained Application Protocol (CoAP) 1112	DMZ 713
Contentfilter 711	DNS-Amplification-Angriff 806
Contiki 1108	DNS-Cache-Poisoning 638
Cookies 837	DNS-Footprinting 233
Covert Channel 486	DNS-Hijacking 639
Crazyradio PA 786	DNS-Injection 639
Credentialed Scan 353	DNS over TLS 663
Credential Stuffing 911, 918	DNSQuerySniffer 519
Cross-Site-Scripting (XSS) 698, 892	dnsrecon 323
Crunch 398, 1036	DNSSEC 663
Crypter 507	dnsspoof 647
Cryptojacking 1167 Crypto-Mining 1167	DNS-Spoofing 638
CrypTool 166	Domain Name System (DNS) 322, 638 DOM-Interface 697
CSRF (Cross-Site-Request-Forgery) 898	Drive-by-Download 455, 760
CSS 842	DriverView 528
Cuckoo 537	Dropbox 1142
CurrPorts 516	Dropper 452
Custom-Recovery 1082	dsniff (Tool) 642, 650
Custom-ROM (Android) 1079	Dumpster Diving 367
CVE 336	DVWA 877
Cyber-Terrorist 42	
·	

E	Fragmentation-Angriff 803
Eavesdropping 628	Fragmentierung 729
EAX, EBX, ECX und EDX (Stack Register) 980	Framegrabber 783
EBP (Stack Pointer) 980	Freenet-Netzwerk 153
EICAR 510	fsutil 573
	FTP-Zugangsdaten ermitteln 610
EIP (Stack Pointer) 980	Fuzzing 986
Elektronische Unterschrift 54	ruzzing 500
E-Mail-Footprinting 237	G
Encoder 475	
Encryption Code 459	Gerätetreiber prüfen 528
Entropie 689	Gesichtsscan 366
Entry Point 962	GHDB siehe Google Hacking Database
enum4linux 301	Golden Ticket 1168
Enumeration 218, 295	Google Cloud Platform 1148
NetBIOS 296	Googledork 228
SMB 297	Google-Hacking 227
Ereignisanzeige 562	Google Hacking Database 229
ESS (Extended Service Set) 1021	gpedit.msc 563
ESSID (Extended Service Set Identifier) 1024	Gqrx 1120
Etcher 790	Greenshot 1192
Ethereal 595	Grey-Box-Test 1178
Ethical Hacking 1176	Grey Hat 42
	Gruppenrichtlinienverwaltungs-Editor 563
Ettercap 651, 1057, 1060	11
Evasion (IDS/IPS) 726	G-Zapper 159
eventlogedit 569	
eventvwr.exe 562	н
evilginx2 768	Hacker-Paragraf 46
Evil Twin (WLAN) 1060	HackRF One 1119
Exploit 336, 354, 435	Hacktivist 42
Exploit-Database 229	Handler 696
Exploit Kit 472	Hard Brick 1079
Exposure siehe Vulnerability	Hash-Algorithmen 181
Extensible Markup Language (XML) 839	Bcrypt und Scrypt 187
	Integritätsprüfung 182
F	Kryptologische Hashfunktionen 185
False Positives 354	Message Digest 5 (MD5) 186
Fastboot 1081, 1082	Passwort-Hashfunktionen 185
_	PBKDF2 186
Federation Services 1167	
FGDump 386	Prüfsummen 185
Fingerabdruck-Scan 366	Secure Hash Algorithm (SHA) 186
Firewalking 716	Hash Injection Attack 396
Firewall 707	Hash Suite 404
Application Layer Gateway 711	Hashwert 52
Contentfilter 711	Haveibeenpwned (Website) 394
Deep Packet Inspection 712	Heap-Buffer-Overflow-Angriff 1005
Failover/Cluster 715	Heap Spraying (Heap Overflow) 1006
iptables 710	Heartbleed-Angriff 203
Netzwerk-Firewall 708	High Availability 53
Paketfilter-Firewall 709	HijackThis 523
Perimeterschutz 709	HIPAA 1181
Personal-Firewall 708	Honeypot 733
Proxy-System 711	hosts (Datei) 518, 523, 640
Stateful Inspection 710	Hotspot 1017
UTM-Lösung 713	hping3 284, 815
FISMA 1182	HTML 842
	HTTP 834
Footprinting 218	
Form 334	CONNECT 837
FQDN 234	DELETE 837

GET 836	Java (Buffer Overflow) 979
HEAD 837	JavaScript 842
Host-Header-Wert 835, 844	JavaScript Object Notation (JSON) 840
PATCH 837	Jobsuchmaschine 226
POST 836	JOESandbox 507
PUT 837	John the Ripper 401, 404
User-Agent 835	JQuery 909
HTTprint 850	JSON 840
HTTrack 240, 855	Juice Shop (OWASP) 872
Hub 594, 632	JV16 Powertools 522
Hub-Modus (Switch) 633	JXplorer 314
Human Hacker 748 Hybrid Cloud 1146	K
Hydra 409	· ·
Hyperion 478	Kali Linux 71
Hypertext Transfer Protocol (HTTP) 834	Netzwerk-Konfiguration 119
Hyper-V 67	Systemsprache ändern (Xfce) 78
Tryper-v 07	Tastatur-Layout (Xfce) 77
I	Update 80
	Kali Linux - Einstellungen 101
IBSS (Independent Basic Service Set) 1020	KARMA-Attacke 788
ICMP 260, 637	Kazam 1191
ICMP-Flood-Angriff 798	KDE 94
ICMP-Tunneling 486	Kerberos 312, 382
Identity and Access Management (IAM) 1166	Key Distribution Center 383
Identity Services Engine 731	Keylogger 454, 491
IDOR (Insecure Direct Object References) 880	Keystroke-Injection 776 KillerBee 1124
IDS (Intrusion-Detection-System) Hostbasiertes IDS (HIDS) 719	Klick Fraud 808
Netzwerkbasiertes IDS (NIDS) 719	Kontextmenü 96
IEEE 802.11 1019	Krypto-Algorithmen 164
IEEE 802.11 1019	Krypto-Algorithmen 104 Kryptoanalyse 163, 201, 202
IIS 845	Brute Force 202
Immunity Debugger 984	Chosen Ciphertext 203
IMSI-Catcher 1074	Chosen Plaintext 203
Informationsbeschaffung 57	Dictionary Attack 201
Infrared Data Association (IrDA) 1110	Frequency Analysis 203
Infrastructure as a Service (IaaS) 1143	Known Ciphertext 203
Injection-Angriff 925	Known Plaintext 203
Internes Netzwerk 88	Man-in-the-Middle-Angriff (MITM) 202
Internet Information Services (IIS) 845	Probable Plaintext 203
Internet of Everything 1107	Rubberhose Attack 203
Internet of Things (IoT) 1105	Seitenkanal-Angriff (Side-Channel Attack) 202
Internet Protocol (IPv4) 259	Timing Attack 202
Intrusion-Detection-System (IDS) 532	Trickery And Deceit 203
iOS (Apple) 1068	Wörterbuchangriff 201
IPS (Intrusion-Prevention-System) 720	Kryptografie
IPsec 198	Algorithmus 165
Authentication Header (AH) 198	Blockchiffre 168
Encapsulation Security Payload (ESP) 198	Cäsar-Chiffre 168
Internet Key Exchange (IKE) 198	Chiffre 168
Iris-Scan 366	digitale Signaturen 187
ISO/IEC 27001 und 27002 1182	Geheimtext 165
	Klartext 165
J	Poodle-Angriff 205
Jailbreak (iOS) 1084	Public Key Cryptography Standards (PKCS) 187
Janus-Angriff 630	Schlüssel 165
Java 842	Stromchiffre 168
	symmetrische Verschlüsselung 167

VeraCrypt 1/2	Exploit für viitpa 343
Vertraulichkeit 167	Module 280
Kryptosystem 164	Nmap in Metasploit nutzen 282
Kryptotrojaner 206	Webscanning 855
	WMAP 855
L	Workspaces 280
_	Metasploitable 85, 278
L0phtcrack 402	
Laborumgebung 70	Meterpreter 435, 575
LAMP 845	Microdot 545
Lan Manager (LM) 381	Microsoft 365 1148
LAN Turtle 785	Mimikatz 443
Lawful interception 628	Mirai 811, 1120
LDAP 312	Mobile Device Management (MDM 1097
Common Name 312	Mobile Proxy-Tools 156
Distinguished Name 312	CyberGhost 157
Organisationseinheit 312	Onion Browser 157
LDAP Admin 316	Orbot 157
libpcap 595	ProxyDroid 157
	Psiphon 157
Light Fidelity (Li-Fi) 1111	Mona (Immunity Debugger) 997
Lightweight-Access Point (LAP) 1022	Most Recently Used (MRU) 571
LimeSDR 786	
Linset 1061	MouseJack-Angriff 787
Linux-Befehle 102	Mouse Jiggler 783
Linux-Rechtesystem 104	MP3Stego 556
Listener 423, 426, 434	MQ Telemetry Transport (MQTT) 1112
Loadbalancing 54	msconfig (Autostart) 524
Local File Inclusion (LFI) 880, 969	msfconsole 468, 1091
Locky 208	msfvenom 440, 468, 994, 1001, 1091
Logging 561	Multihandler 468
Lokale Sicherheitsrichtlinie 563	Multipartite-Virus 458
Long Range Wide Area Network (LoRaWAN) 1111	Mutillidae II 875
Low Orbit Ion Cannon (LOIC) 821	
LSASS 386	N
ED1100 300	nasm_shell.rb 998
М	Nbtscan 298
MAC-Adresstabelle 633	nbtstat 299
macchanger 1050	Ncat 287, 420
MAC-Flooding 633	Ncrack 410
macof 647	Near-Field Communication (NFC) 1111
Magisk 1084	Nessus 344, 856
Makrovirus 458	net-Befehle 300
Maltego 245	NetBEUI 297
Malware 452	NetBIOS 296
Malware-Analyse 503	NetBIOS Enumerator 302
Management-Report 1192	Netcat 287, 420
Man-in-the-Browser-Angriff (MIB/MITB) 696	Netcraft 222
Man-in-the-Cloud (MITC) 1161	Netstat 516
	net user 375
Man-in-the-Middle (MITM) 629	Network Access Control 731
Man-in-the-Mobile 1072	Network Address Translation 131
Man-Pages 116	Netzwerkbrücke 88
Mausezahn 286	
Maximum Transmission Unit (MTU) 729	Netzwerkschnittstelle konfigurieren 121
mdk3 1036, 1039	Netzwerk-Sniffer 593
Medusa 407	Neutrino 472
Mesh-Netzwerk (WLAN) 1022	Nexpose 350
Metagoofil 240	Nikto2 355, 857
Metasploit 278	NIST 170, 338
	11151 170, 550

Firewall/IDS Evasion 273	pattern_create.rb 990
Half-Open-Scan 267	pattern_offset.rb 992
Host Discovery 264	Payload 435, 452
IPv6-Netzwerke scannen 288	staged 436
NSE 275	unstaged 436
OS Detection 273	PCI DSS 1181
Ping-Scan 265	Peer-to-Peer-Netzwerk 147
Ports festlegen 269	Penetrationstest 1176
Reports 274	Penetrationstester 41, 42
Service Identification 272	Penetration Testing Execution Standard (PTES) 1187
SYN-Stealth-Scan 267	Pepper (Passwort-Hashes) 391
TCP-ACK-Scan 270	Perimeter-Schutz 534
TCP-Connect-Scan 268	Permanenter DoS-Angriff (PDoS) 805
TCP-IDLE-Scan 271	Personen-Suchmaschine 226
TCP NULL-, FIN- und Xmas-Scan 271	pestudio 506
TCP-SYN-Scan 267	Petya 207
UDP-Scan 268	Pfadangabe 111
Vulnerability-Scanning 341	Pharming 758
Webscanning 855	Phishing 752, 758
Zenmap 277	Phlashing 805
Noise Jamming 1037	PHP 842
NOP-Byte 1003	Ping 637
	Ping of Death 799
Notepad++ 1192	
Npcap 595	Pivoting 1166 Platform as a Service (PaaS) 1143
nslookup 323, 963 NTLM 382	, , , , , , , , , , , , , , , , , , , ,
	Pluggable Authentication Modules 388
NTP 320	Polymorphic Code 458
ntpdc 321	Post-Exploitation 417, 430
ntpq 321	Potential Unwanted Application (PUA) 522
ntptrace 320	Potential Unwanted Program (PUP) 522, 530
Null-Session 303	Powershell 418
_	Printer Exploitation Toolkit (PRET) 1126
0	Private Cloud 1145
Obfuscater 507	Privilegien-Eskalation 417
Obfuscating 477	Process Explorer 513, 525
onesixtyone 310	Process Monitor 514
OpenPuff 556	Programmausführung abbrechen 113
OpenSSL 201	Promiscuous Mode 90, 594, 598
OpenStego 550	Prompt 103
OpenVAS 349	Proxifier 146
OSINT 218	Proxmark 3 788
OSI-Referenzmodell 257	Proxychains 135, 146
OSSTMM 1185	Proxys 131
OUI (MAC-Adresse) 599	Arten 132
OWASP 871, 1187	Public Cloud 1144
OWASP Top 10 873, 879	Public-Key-Infrastruktur (PKI) 189
	Certificate Authority 190
P	Digitale Zertifikate 190
	OCSP 196
Packet Sqirrel 784	Zertifikatsspeicher 192
Pacu 1171	Zertifikatssperrlisten und OCSP 195
PAM 388	Puffer (Buffer Overflow) 979
Passive Discovery 217	PuTTY 140, 467, 521
Pass the Hash (PTH) 396	PWDump 386
passwd (Datei) 388	–
Password Guessing 368	R
Passwort-Richtlinie 369	
PATH-Variable 418	Radio-Frequency Identification (RFID) 1111 Rainbow-Tables 391, 395
	NAUDOW-LADIES 171, 193

Dangamayyana 207 454	Sandboxie 535
Ransomware 206, 454	Sandcat Browser 850
Raspberry Pi 788	
reaver (WPS-Cracking) 1048	Sanitizer 900
Reconnaissance 57, 218	Sarbanes-Oxley Act (SOX) 1182
Recon-ng 241	Scanning 218, 256
Red Teaming 1178	Scareware 454
REG.exe 573	Schutzklassen 50
RegCleaner 522	Schutzziele 49
regedit.exe 521	SCP 613
Register (Stack) 980	Scriptkiddie 41
Registrierungsdatenbank (Windows) 520	Scrubbing Center 814
Registrierungs-Editor 521	Searchbot 808
Registry 520	Seattle Lab Mail (SLmail) 981
RegScanner 521	Secure Shell (SSH) 613
Regshot 521	Security Audit 1177
Remote File Inclusion (RFI) 970	Security Autorun 525
Remote Scan 353	Security Policy 538
Report	SEH Overwrite Protection (SEHOP) 1008
Management- 1192	Service-Manager 526
technischer 1192	Service Set Identifier (SSID) 1023
Rescue-Disk 508	Session Fixation-Angriff 699
REST-API 841	Session Hijacking 667
Retina-Scan 366	Active Session Hijacking 669
Retire.js 909	Application Level Hijacking 668
Reverse Engineering 503	Application Level Session Hijacking 67.
Reverse Proxy 852	Network Level Hijacking 668
Reverse-Shell 426	, -
RFCrack 1120	Passive Session Hijacking 669 Session-ID 676
Rijndael siehe Symmetrische Algorithmen	Session Replay-Angriff 699
RIOT 1108	Session Token 676
Risk-Assessment 351	SFTP 613
robots.txt 853	shadow (Datei) 388
Rogue Access Point 787, 792	Shebang-Zeile 106
Rogue DHCP-Server 641	Sheep-Dipping 533
Rolling Code 1118	Shell 418
ROMMON-Modus (Cisco) 379	Shellcode 978, 1002
root 101	Shellshock 858
Rooten (Android) 1079	Shellter 480
Rootkit 420, 482	Shodan 224, 1126
LKM-Rootkit 484	shred 579
Userland-Rootkit 484	Sicherheitsstufe 50
XCP 484	Sidejacking 668, 695
ZeroAccess 485	SIEM-System 340, 353, 584, 719, 918
Root-Shell 343, 427	sigverif.exe 530
Routersploit 1126	SIM-Lock 1085
rpcclient 303	Skipfish 857
RST Hijacking 675	Skriptvirus 458
Rsyslog 566	SlowHTTPTest 805
Rubber Ducky 776	Slowloris 804
	Smart Home 1106, 1108
S	SMB 297
SafeSEH 1008	SMiShing 1073
SafetyNet-Service (Android) 1079	SMTP 316
Salt-Wert (Passwort-Hashes) 390	Smurf Attack 799
Samba 297	Snagit 1192
SAM-Datenbank 381	Sniffing 593, 628
Sample (Malware) 507, 537	SNMP 303
Sandbox 509, 535	Community-String 304

MIB 304	SSH-Server 117
OID 304	TCP-Verbindungen tunneln 139
Trap 306	SSL 199
snmpwalk 311	sslstrip 1059
Snort 722	SSL-VPN 199
Konfiguration 723	Stack 979
Regeln 723	Stack Buffer Overflow 977
SNscan 310	Stack Canary (Stack Cookie) 1008
SOAP 840	Stack Pointer (SP) 980
Social Bot 808	Stapel 979
Social Engineering 230, 747	Steganografie 543
CEO Fraud 755	Jargon Code 548
Computer Based Social Engineering 758	Least Significant Bits 550
Dumpster Diving 757	Open Code 548
Eavesdropping 756	Semagramm 547
Fake Websites 752	Steganalyse 556
Human Based Social Engineering 751, 754	Steganogramm 549
Mobile Based Social Engineering 752	StegoStick 554
Pharming 758	Stegosuite 552
Phishing 752, 758	Strings (Sysinternals) 505
Piggybacking 757	Stuxnet 61
Reverse Social Engineering 752	Sudo 107
Shoulder Surfing 756	sudo 391
Spear Phishing 759, 767	Suicide Hacker 42
Tailgating 757	Supply-Chain-Angriff 498
Technical Support Scam 755	Switch 594, 633
Vishing 754	Symmetrische Algorithmen 169
Whaling 760	Data Encryption Standard (DES) 170
Social-Engineer Toolkit (SET) 762	Rivest Cipher 171
Social-Media-Footprinting 229	Serpent 172
SOCKS 141	Triple-DES (3DES oder DESede) 170
Clientkonfiguration 142	Twofish und Blowfish 171
Dante 142	und Rijndael) 170
vicSOCK 145	SYN-Cookies 801
Software	Syn-Flood-Angriff 800
entfernen 125	Syslog 564
installieren 124	Syslog-ng 566
Paketlisten aktualisieren 123	375109 119 300
suchen 124	Т
Update (Kali Linux) 123	•
Software as a Service (SaaS) 1143	Tails (Linux-Distribution) 155
Software Defined Radio (SDR) 786, 1119	Task-Manager 512, 524 TCP 262
Source Routing 675	
Spam Mimic 546	desynchronized state 674
Spear Phishing 759	Initial Sequence Number (ISN) 672
Spoofing 669	Receive Window 671
SpyAgent 494	RST/Reopen 674
Spytech SpyAgent 494	SACK 799
Spyware 454, 491	Session Splicing 730
SQL 889	Sliding Window 671
SQL-Injection 889, 925	Window Size 671
	tcpdump 618
Blind SQL-Injection 939 Boolean SQL-Injection 945	TCP-Handshake 602
,	TeamViewer 1075
Tautology based SQL-Injection 929	TeamWinRecoveryProject (TWRP) 1083
Time based SQL-Injection 946	Teardrop-Angriff 804
SQLMap 948 SSH (Secure Shell) 130, 143	Technischer Report 1192
SSH (Secure Shell) 139, 143 PuTTY 140	Technitium MAC Address Changer 1050
ru11114V	Telnet 287, 611

Temporal Key Integrity Protocol (TKIP) 1027	V
THC Hydra 409	Veil-Framework 479
Throwing Star LAN Tap Pro 785	VeraCrypt 172
Ticket Granting Server 384	Verzeichnis 111
Ticket Granting Ticket 383	VideoGhost 783
Tier (Architektur) 832	Viren-Baukasten 470
Timestamp 573	Virencheck 508
TLS 200	VirtualBox 67, 68
Tomcat 689	Gasterweiterungen 79
Tor-Netzwerk 147	Hostkey 79
DuckDuckGo 149	Netzwerk-Konfiguration 87
Hidden Wiki 151	Sicherungspunkt 80
Onion-Adressen 149	Snapshot 80
Onion-Proxy 148	Virtualisierung (Cloud) 1148
Onion Services 149	Virtualisierungssoftware 68
touch 582	Virtual Local Area Networks 732
Tracking-Pixel 130	Virtual Private Network (VPN) 137, 197
Transparenter Proxy 132	IPsec 137
Transport Layer Security (TLS 200	IPsec-VPN 198
Treiber prüfen 528	OpenVPN 137
Tripwire 532	Remote-Access-VPN 197
Trojaner 452, 465	Site-to-Site-VPN 197
Baukasten 470	SSL-VPN 198
Botnet-Trojaner 466	VPN-Anbieter 138
CLI-Trojaner 465	VPN-Gateway 137
Covert-Channel-Trojaner 467	Virus 457
destruktive Trojaner 467	Virus Maker 471
E-Banking-Trojaner 467	VirusTotal 473
FTP-Trojaner 466	Vishing 754
HTTP/HTTPS-Trojaner 466	VLAN Hopping 732
ICMP-Tunneling-Trojaner 467	VMware 67
Proxy-Server-Trojaner 466	Vulnerability 336
Remote-Access-Trojaner 466	Vulnerability Assessment 256, 351, 1177
VNC-Trojaner 466	Vulnerability-Scanner 339
TShark 621	Vysor 1075
U	W
Überwachungsrichtlinien (Windows) 562	Wachstafel (Steganografie) 545
U-Boot (Bootloader) 1122	WAFW00F 852
Ubuntu Core 1108	WannaCry 206
UDDI 840	Wardriving 1024
UDP 261	wash (WiFi-Scanning) 1047
UDP-Flood-Angriff 798	Watering-Hole-Angriff 761
UDP Hijacking 675	WayBack Machine 223
UNC (Uniform Naming Convention 297	WDS (Wireless Distribution Set) 1022
Uniform Resource Identifier (URI) 676	Wearables 1106
Uniform Resource Locator (URL) 676, 833	Web Application Firewall (WAF) 852
Universal Asynchronous Receiver Transmitter (UART)	Web Bug 130
1121	Webcrawler 808
USB-Keylogger 775	WebDAV 841
USBNinja 782	Web-Hacking 831
USB-Sticks infizieren mit SET 767	Web Security Dojo 878
Use-after-free (Heap Overflow) 1006	Webserver 832, 843
UserLAnd (App) 1086	Webshell 969
UTF-8 834	Website-Footprinting 239
	Web Spider (Web Crawler) 853
	Web Vulnerability Scanner (WVS) 856

WebWolf 875 weevely 969 WEP (Wired Equivalent Privacy Protocol) 1026 wevtutil.exe 571 Whaling 760 White-Box-Test 1178 White Hat 41 White Hat Hacking 1176 Whois 231 Wi-Fi Alliance 1020	WPA2 1027 WPA (Wi-Fi Protected Access) 1027 WPA/WPA2-Angriff 1043 WPS (Angriff) 1046 WPS (Wi-Fi Protected Setup) 1028 WPScan 866 Wrapper 468 WS-* 840 WSDL 840 wtmp 580
WiFiKill 1088	Wurm 453, 459
wifiphisher 1061 WiFi Pineapple 787, 1060 Win32DiskImager 790 Windows 10 81 Windows 11 81 Windows 7 81 Wine 478 WinPcap 595 Wireless Access Point (AP) 1020 Wireless KeyView 1052 Wireless LAN (WLAN) 1017 Frequenzen 1018 Honeypot 787 Phishing 1060 Sniffing 634 Wireshark 518, 593 Anzeigefiltern 606	X XAMPP 845 XEN 68 Xfce 94 XML 839 XML-Entity 906 XSRF 899 XSS 892 XXE (XML External Entities) 906 Z zAnti 1088 Zeitstempel 573 Zeitzone einstellen 97 Zenmap 277 Zephyr 1108
Capture Filter 601 Display Filter 601, 606 Ncap 595 Pcap 595 Wiretapping 628 WordPress 861 Wörterbuch-Angriffe 393 Wortlisten (Passwort-Hacking) 394	Zero-Day-Exploit 354 ZigBee 1111, 1124 Zombie (Botnetze) 809 Z-Shell 104 Zwei-Faktor-Authentifizierung (2FA) 366 Zwiebel-Routing (Tor) 147