3D-Konstruktionen mit

Inventor 2026

Der umfassende Praxiseinstieg

Mit Übungsbeispielen und Aufgaben inkl. Lösungen

	Einlei	tung	11
I	Vorül	perlegungen zu einfachen 3D-Konstruktionen	15
I.I		hasen der Inventorkonstruktion	15
1.2	Wie e	ntsteht ein 3D-Modell?	19
	I.2.I	Grundkörper	19
	1.2.2	Bewegungskörper	21
	1.2.3	Erstellung aus Flächen durch Verdicken	29
	1.2.4	Erstellung aus geschlossenem Flächenverbund	30
	1.2.5	Erstellung aus Freiform-Geometrie	31
1.3	Analy	se der Aufgabe vor der Konstruktion	32
	1.3.1	Modellierung aus Grundkörpern und Bewegungskörpern	33
	1.3.2	Modell aus zwei Extrusionen	34
	1.3.3	Modell aus drei 2D-Darstellungen (Dreitafelbild)	36
1.4	Ergän	zungen zum Volumenkörper: Features und	
	Nachl	bearbeitungen	39
1.5	Die B	ottom-Up- und Top-Down-Methoden	41
	1.5.1	Bottom-Up	41
	1.5.2	Top-Down	42
1.6			43
2	Instal	lation, Benutzeroberfläche und allgemeine Bedienhinweise	45
2.I	Down	load und Installation einer Test- oder Studentenversion	45
2.2	Hard-	und Software-Voraussetzungen	46
2.3		re installierte Programme	48
2.4	Inven	tor Professional 2026	49
	2.4.I	Start	49
2.5	Die Ir	nventor-Benutzeroberfläche	50
	2.5.1	Programmleiste	51
	2.5.2	Datei-Menü	51
	2.5.3	Schnellzugriff-Werkzeugkasten	52
	2.5.4	Kommunizieren und Informieren	55

	2.5.5	Multifunktionsleisten, Register, Gruppen und Flyouts	55		
	2.5.6	Dokument-Registerkarten	63		
	2.5.7	Browser	63		
	2.5.8	Befehlszeile und Statusleiste	64		
	2.5.9	Ansichtssteuerung mit Maus	66		
	2.5.10	Ansichtssteuerung mit der Navigationsleiste	67		
	2.5.11	ViewCube	68		
	2.5.12	Nützliche Einstellungen für die Optionen	69		
2.6	Wie kann ich Befehle eingeben?				
	2.6.1	Multifunktionsleisten	70		
	2.6.2	Tastenkürzel	72		
	2.6.3	Kontextmenü	72		
	2.6.4	Objekte zum Bearbeiten anklicken	73		
	2.6.5	Hilfe	74		
2.7	Übung	gsfragen	75		
3	Erste e	einfache 3D-Konstruktionen	77		
3.I	Einfac	he Konstruktion mit Grundkörpern	77		
	3.1.1	Ein neues Projekt anlegen	77		
	3.1.2	Ein neues Bauteil beginnen	79		
	3.1.3	Übungsteil aus Grundkörpern erstellen	80		
	3.1.4	Speichern	82		
	3.1.5	Ansicht schwenken	83		
	3.1.6	Zwei nützliche Einstellungen	84		
	3.1.7	Hinzufügen eines Zylinders	85		
	3.1.8	Halbkugel als Vertiefung	87		
	3.1.9	Der Torus	87		
3.2	Einfac	hes Extrusionsteil	88		
	3.2.1	Eine Skizze erstellen	89		
3.3	Einfac	hes Rotationsteil	103		
3.4	Übung	gsfragen	105		
4	Die Sk	izzenfunktion	107		
4.I	Funkti	ionen für zweidimensionales Skizzieren	107		
	4.1.1	Funktionsübersicht	108		
	4.1.2	Interaktiver Aufruf für Skizzenbefehle	109		
	4.1.3	Linienarten	110		
	4.1.4	Punktfänge	111		
	4.1.5	Rasterfang	113		

	4.1.6	Koordinatentyp	115
	4.1.7	Objektwahl	117
4.2	Abhän	gigkeiten	117
	4.2.1	Abhängigkeitstypen	120
	4.2.2	Lockerung von Abhängigkeiten	122
4.3	2D-Sk	izzen	124
	4.3.1	Eine erste Kontur	124
	4.3.2	Kontur mit Linien und Bögen	127
	4.3.3	Bögen in der Kontur	130
	4.3.4	Kreise und Ellipsen in der Skizze	131
	4.3.5	Rechtecke in der Kontur	132
	4.3.6	Splines und Brückenkurven in der Kontur	136
	4.3.7	Kurven mit Funktionsbeschreibungen	138
	4.3.8	Rundungen und Fasen in der Skizze	139
	4.3.9	Texte in der Skizze	141
	4.3.10	Punkte in der Skizze	142
	4.3.11	Punkte aus Excel importieren	144
	4.3.12	Skizze aus AutoCAD importieren	145
	4.3.13	Skizzenblöcke	148
4.4	3D-Ski	zzen	149
	4.4.I	3D-Koordinateneingabe	150
	4.4.2	Kurven für 3D-Skizzen	153
	4.4.3	Kurven mit Funktionsbeschreibungen	156
4.5	Bearbe	eitungsbefehle für 2D-Skizzen	161
	4.5.1	Geometrie projizieren/Schnittkanten projizieren	161
	4.5.2	Verschieben	164
	4.5.3	Kopieren	164
	4.5.4	Drehen	165
	4.5.5	Stutzen	165
	4.5.6	Dehnen	165
	4.5.7	Trennen	166
	4.5.8	Skalieren	166
	4.5.9	Gestreckt	167
	4.5.10	Versatz	167
	4.5.11	Muster – Rechteckig	168
	4.5.12	Muster – Polar	168
	4.5.13	Muster – Spiegeln	169

4.6	Bearbe	eitungsbefehle für 3D-Skizzen	170
	4.6.1	Abhängigkeiten in 3D-Skizzen	170
	4.6.2	Die 3D-Transformation	170
4.7	Skizze	n-Bemaßung	171
	4.7.1	Bemaßungsarten	171
	4.7.2	Bemaßungsanzeige	173
	4.7.3	Maße übernehmen	176
4.8	Skizze	n überprüfen	178
	4.8.1	Freiheitsgrade	179
	4.8.2	Geometrische Abhängigkeiten	180
	4.8.3	Skizzenanalyse	182
	4.8.4	Hilfslinien, Mittellinien	184
4.9	Arbeit	selemente	185
	4.9.1	Arbeitsebenen	186
	4.9.2	Arbeitsachsen	195
	4.9.3	Arbeitspunkte	196
4.10	Übung	gsfragen	197
5	Volum	nenkörper und Flächen erstellen	199
5.1	Volum	nenkörper erstellen	199
	5.1.1	Extrusion	201
	5.1.2	Drehung	204
	5.1.3	Erhebung	208
	5.1.4	Sweeping	214
	5.1.5	Spirale	217
	5.1.6	Prägen	220
	5.1.7	Ableiten	221
	5.1.8	Rippe	225
	5.1.9	Aufkleber	228
	5.1.10	Importieren	229
	5.1.11	Entfalten	233
5.2	Grund	lkörper	234
	5.2.1	Quader	235
	5.2.2	Zylinder	236
	5.2.3	Kugel	237
	5.2.4	Torus	238
5.3	Fläche	en	239
	5.3.1	Heften	240
	5.3.2	Umgrenzungsfläche	241

	5.3.3	Formen	241
	5.3.4	Regelfläche	242
	5.3.5	Stutzen	243
	5.3.6	Dehnen	243
	5.3.7	Fläche ersetzen	243
	5.3.8	Körper reparieren	244
	5.3.9	Netzfläche anpassen	244
	5.3.10	Weitere Flächenbearbeitungen mit Volumenkörper-	
		Funktionen	246
5.4	Bemaß	Rungen im Bauteil	246
5.5	Übung	gsfragen	248
6	Volum	enkörper bearbeiten	249
6.1		es	249
	6.1.1	Bohrungen	249
	6.1.2	Rundungen	254
	6.1.3	Fasen	259
	6.1.4	Wandung	261
	6.1.5	Flächenverjüngung	262
	6.1.6	Trennen	265
	6.1.7	Gewinde	267
	6.1.8	Biegungsteil	268
	6.1.9	Verdickung/Versatz	269
	6.1.10	Markieren	269
	6.1.11	Oberfläche	270
6.2	iFeatu	res	272
6.3	Weiter	re Ändern-Befehle	274
	6.3.1	Kombinieren	274
	6.3.2	Fläche löschen	275
	6.3.3	Körper verschieben	276
	6.3.4	Objekt kopieren	277
6.4	Direkt	bearbeiten	277
	6.4.1	Verschieben	279
	6.4.2	Größe	280
	6.4.3	Maßstab (korrekt übersetzt: Skalieren)	280
	6.4.4	Drehen	281
	615	Löschen	281

6.5	Muste	r	282
	6.5.1	Rechteckige Anordnung	283
	6.5.2	Runde Anordnung	284
	6.5.3	Skizzenbasiert	284
6.6	Benutz	zer-Koordinaten-Systeme	285
6.7	Zwiscł	hen Bauteil und Baugruppe: Multipart-Konstruktionen	286
6.8	Konstr	ruktionsbeispiel	289
6.9	Übung	gsfragen	292
7	_	uppen zusammenstellen	293
7.1		t erstellen	293
7.2	Funkti	ionsübersicht Baugruppen	295
7.3	Erster	Zusammenbau	297
	7.3.1	Die Bauteile	297
	7.3.2	Das Platzieren	298
	7-3-3	Abhängigkeiten erstellen	300
	7.3.4	Anzeige von Abhängigkeiten	304
	7-3-5	Bewegungsanzeige	304
7.4	Baugrı	uppen-Abhängigkeiten	305
	7.4.1	Passend/Fluchtend	305
	7.4.2	Hilfsmittel: Freie Verschiebung/Freie Drehung	306
	7.4.3	Winkel	307
	7.4.4	Tangential	308
	7.4.5	Einfügen	309
	7.4.6	Symmetrie	309
	7.4.7	Abhängigkeiten unterdrücken	309
	7.4.8	Passend/Fluchtend-Beispiel	309
	7.4.9	Einfügen-Beispiel	314
	7.4.10	Winkel-Beispiel	315
	7.4.11	Tangential-Beispiel	317
	7.4.12	Symmetrie-Beispiel	318
7.5	Beweg	rungsabhängigkeiten	319
	7.5.1	Beispiel für Drehung	319
	7.5.2	Beispiel für Drehung-Translation	320
	7.5.3	Schraubbewegung	320
	7.5.4	Schraubbewegung über Parameter-Manager	321
7.6	iMates		323
7.7	Abhän	gigkeiten über die Verbindungsfunktion	326

7.8	Adapti	ive Bauteile	331
	7.8.1	Adaptivität nachrüsten	331
	7.8.2	Bauteil in Baugruppe erstellen	333
7.9	Teile a	us Inhaltscenter einfügen	336
	7.9.1	Beispiel: Kugellager	336
	7.9.2	Beispiel: Schrauben	340
7.10	iParts.		342
7.11	iAsser	nblies	344
7.12	Model	lzustände	345
7.13	Exemp	plareigenschaften	346
7.14	Geom	etrievereinfachung	348
7.15	Übunş	gsfragen	349
8	Zeichı	nungen ableiten	351
8.1		nten erzeugen	352
	8.1.1	Standard-Ansichten	352
	8.1.2	Benutzerspezifische Ansichtsausrichtung	355
	8.1.3	Parallelansicht	356
	8.1.4	Hilfsansicht	356
	8.1.5	Schnittansicht	357
	8.1.6	Detailansicht	361
	8.1.7	Überlagerung	362
8.2	Ansichten bearbeiten		
	8.2.1	Unterbrochen	365
	8.2.2	Ausschnitt	365
	8.2.3	Aufgeschnitten	368
	8.2.4	Zuschneiden	369
	8.2.5	Ausrichtung	369
8.3	Bemaf	Rungen, Symbole und Beschriftungen	370
	8.3.1	Bemaßungsarten	370
	8.3.2	Bemaßungsstil	381
8.4	Symbo	ble	383
	8.4.1	Gewindekanten	383
	8.4.2	Mittellinien	384
	8.4.3	Bohrungssymbole	385
	8.4.4	Kantensymbol	386

8.5	Beschi	riftungen	387
	8.5.1	Form-/Lagetoleranzen	388
	8.5.2	Bohrungstabelle	389
	8.5.3	Revisionswolke	390
	8.5.4	Stückliste	390
8.6	Übung	gsfragen	395
9		ntationen, realistische Darstellungen und Rendern	397
9.1		onsübersicht	397
9.2	Drehb	uch animieren	403
9.3	Darste	llungsarten	406
	9.3.1	iProperties einstellen	407
	9.3.2	Die verschiedenen visuellen Stile	407
	9.3.3	Halbschnitt	411
	9.3.4	Darstellung mit Volumen-Ausschnitt	412
9.4	Invent	or Studio	416
	9.4.1	Beleuchtung und Szene	417
	9.4.2	Kamera einstellen	418
	9.4.3	Rendern	419
9.5	Übung	gsfragen	420
10	Param	eter – Excel – Varianten	421
IO.I	Param	eter nutzen	421
	10.1.1	Parameterliste und manuelle Änderungen	422
	10.1.2	Benutzerparameter	425
	10.1.3	Formeln	427
	10.1.4	Multivalue-Parameter für Varianten	428
	10.1.5	Excel-Tabelle	428
10.2	Übung	gsfragen	431
Α	Lösun	gen zu den Übungsfragen	433
В	Benutz	zte Zeichnungen	441
	Stichw	vortverzeichnis	457

Einleitung

Neu in Inventor 2026

Jedes Jahr im Frühjahr erscheint eine neue Inventor-Version. Bei der Version Inventor 2026 gibt es generell etliche allgemeine Performance-Optimierungen und zahlreiche Verbesserungen im Detail, die sich oft an die Änderungen der Vorgängerversion anschließen. Ohne die nötigen Detailkenntnisse kann deshalb hier in der Einleitung nicht auf die typischen Verbesserungen eingegangen werden.

Im Bereich BAUTEILE betreffen die Verbesserungen folgende Themen:

- Bei Anordnungsfunktionen werden zusätzliche unregelmäßige Exemplare ermöglicht.
- Die Benutzeroberfläche im Blech-Bereich wurde optimiert.
- In der Wandungsfunktion gibt es eine Überarbeitung.
- Optimierung für das Vereinfachen von Bauteilen.
- Im Parameterdialog gibt es neue Möglichkeiten zur Gruppierung und zur Elementunterdrückung.
- Für die Oberflächen gibt es Verbesserungen bzgl. der Verwendung in Autodesk Viewer.

Themen der Neuerungen im Bereich BAUGRUPPEN sind:

- Beim Spiegeln kann neben der Geometrie auch die Position mitgenommen werden.
- Bei Modellzuständen ist die Bearbeitung mehrerer Zustände gleichzeitig möglich
- Bei der Vereinfachungsfunktionen gibt es weitere Anpassungen speziell für den BIM-Bereich.
- Verbesserungen für Baugruppenanmerkungen.
- Festlegung lokaler Favoritengruppen beim Inhaltscenter.
- Verbesserungen in den Konstruktionsbereichen Schraubverbindungen, Kerbzahnprofil, Gestell-Generator, Rohren und Leitungen.

Im Bereich ZEICHNUNGEN wurden folgende Themen überarbeitet:

- Skizzenbasierte Ansichtsunterbrechung,
- Anzeige von Ansichtseigenschaften,
- Ansichtskanten in parallelen Ansichten,
- Bemaßungen mit summierten Werten,
- Komponentensichtbarkeit über Tastaturkürzel steuern,
- Erweiterung der Zeichnungsstile.

Es gibt außerdem einige allgemeine Anpassungen für Dialogfelder bzgl. Windows-Standards, Verbesserungen zur Interoperabilität mit Revit und zur Übersetzung in CAD-Fremdformate.

Für wen ist das Buch gedacht?

Dieses Buch wurde in der Hauptsache als Buch zum Lernen und zum Selbststudium konzipiert. Es soll Inventor-Neulingen einen Einstieg und Überblick über die Arbeitsweise der Software geben, unterstützt durch viele Konstruktionsbeispiele. Es wurde absichtlich darauf verzichtet, mit einer gigantischen Konstruktion zu imponieren, dagegen sollen einzelne kleine Konstruktionsbeispiele die wichtigsten Anwendungsmöglichkeiten des Programms vorführen. Die grundlegenden Bedienelmente werden schrittweise anhand verschiedener einzelner Beispielkonstruktionen in den Kapiteln erläutert.

In zahlreichen Kursen, die ich für die *Handwerkskammer für München und Oberbayern* abhalten durfte, habe ich erfahren, dass gute Beispiele für die Befehle mehr zum Lernen beitragen als die schönste theoretische Erklärung. Erlernen Sie die Befehle und die Vorgehensweisen, indem Sie gleich Hand anlegen und mit dem Buch vor sich jetzt am Computer die ersten Schritte gehen. Sie finden hier zahlreiche Demonstrationsbeispiele, aber auch Aufgaben zum Selberlösen. Wenn darunter einmal etwas zu Schwieriges ist, lassen Sie es zunächst weg. Sie werden sehen, dass Sie etwas später nach weiterer Übung die Lösungen finden. Benutzen Sie das Register am Ende auch immer wieder zum Nachschlagen.

Umfang des Buches

Das Buch ist in 10 Kapitel gegliedert. Der gesamte Stoff kann, sofern genügend Zeit (ganztägig) vorhanden ist, vielleicht in zwei bis drei Wochen durchgearbeitet werden. Am Ende jedes Kapitels finden Sie Übungsfragen zum theoretischen Wissen. Die Lösungen finden Sie in einem abschließenden Kapitel, sodass Sie sich kontrollieren können. Nutzen Sie diese Übungen im Selbststudium und lesen Sie ggf. einige Stellen noch mal durch, um auf die Lösungen zu kommen.

Sie werden natürlich feststellen, dass dieses Buch nicht alle Befehle und Optionen von Inventor beschreibt. Sie werden gewiss an der einen oder anderen Stelle tiefer einsteigen wollen. Den Sinn des Buches sehe ich eben darin, Sie für die selbstständige Arbeit mit der Software vorzubereiten. Sie sollen die Grundlinien und Konzepte der Software verstehen. Mit dem Studium des Buches haben Sie dann die wichtigen Vorgehensweisen und Funktionen kennengelernt, sodass Sie sich auch mit den Online-Hilfsmitteln der Software weiterbilden können. Stellen Sie dann weitergehende Fragen an die Online-Hilfe und studieren Sie dort auch Videos.

Für weitergehende Fragen steht Ihnen auch eine umfangreiche Hilfefunktion in der Software selbst zur Verfügung. Dort können Sie nach weiteren Informationen suchen. Es hat sich gezeigt, dass man ohne eine gewisse Vorbereitung und ohne das Vorführen von Beispielen nur sehr schwer in diese komplexe Software einsteigen kann. Mit etwas Anfangstraining aber können Sie dann leicht Ihr Wissen durch Nachschlagen in der Online-Dokumentation oder über die Online-Hilfen im Internet erweitern, und darauf soll Sie das Buch vorbereiten.

Über die E-Mail-Adresse DRidder@t-online.de erreichen Sie mich bei wichtigen Problemen direkt. Auch für Kommentare, Ergänzungen und Hinweise auf eventuelle Mängel bin ich dankbar. Geben Sie als Betreff dann immer den Buchtitel an.

Schreibweise für die Befehlsaufrufe

Da die Befehle auf verschiedene Arten eingegeben werden können, die Multifunktionsleisten sich aber wohl als normale Standardeingabe behaupten, wird hier generell die Eingabe für die Multifunktionsleisten beschrieben, sofern nichts anderes erwähnt ist. Ein typischer Befehlsaufruf wäre beispielsweise SKIZZE| ZEICHNEN|LINIE (REGISTER|GRUPPE|FUNKTION).

Oft gibt es in den Befehlsgruppen noch Funktionen mit Untergruppierungen, sogenannte Flyouts, oder weitere Funktionen hinter der Titelleiste der Gruppe. Wenn solche aufzublättern sind, wird das mit dem Zeichen ▼ angedeutet.

Verwendung einer Testversion

Sie können sich über die Autodesk-Homepage www.autodesk.de eine Testversion für 30 Tage herunterladen. Diese dürfen Sie ab Installation 30 aufeinanderfolgende Tage (Kalendertage) lang zum Testen benutzen. Der 30-Tage-Zeitrahmen für die Testversion gilt strikt. Eine Deinstallation und Neuinstallation bringt keine Verlängerung des Zeitlimits, da die Testversion nach einer erstmaligen Installation auf Ihrem PC registriert ist. Für produktive Arbeit müssen Sie dann eine kostenpflichtige Lizenz erwerben.

Downloads zum Buch

Auf der Webseite des Verlags können Sie zusätzlich zu den Anleitungen und Zeichnungen im Buch die vollständigen Projekte der 3D-Beispiele inklusive der Bauteile, Baugruppen und Zeichnungen kostenlos herunterladen.

Außerdem werden hier weiterführende Themen als PDF-Dateien angeboten:

- Unter »Kapitel 11.pdf« finden Sie kurze Einführungen zu den Themen Blechteile, Wellengenerator, Schweißen und Interoperabilität mit Revit und Fusion.
- Unter »Kapitel 12.pdf« gibt es eine kurze Einführung in die Programmierung von Variantenteilen mit iLogic.

Besuchen Sie hierzu www.mitp.de/1098 und wählen sie den Reiter DOWNLOADS aus.

Wie geht's weiter?

Mit einer Inventor-Testversion, dem Buch und den hier gezeigten Beispielkonstruktionen hoffe ich, Ihnen ein effektives Instrumentarium zum Erlernen der Software zu bieten. Benutzen Sie auch den Index zum Nachschlagen und unter Inventor die Hilfefunktion zum Erweitern Ihres Horizonts. Dieses Buch kann bei Weitem nicht erschöpfend sein, was den Befehlsumfang von Inventor betrifft. Probieren Sie daher immer wieder selbst weitere Optionen der Befehle aus, die ich in diesem Rahmen nicht beschreiben konnte. Konsultieren Sie auch die Hilfefunktion von Inventor, um tiefer in einzelne Funktionen einzusteigen. Arbeiten Sie viel mit Kontextmenüs und den dynamischen Icons.

Das Buch hat gerade durch die Erstellung der vielen Illustrationen viel Mühe gekostet, und ich hoffe, Ihnen als Leser damit eine gute Hilfe zum Start in das Thema Inventor 2026 zu geben. Ich wünsche Ihnen viel Erfolg und Freude bei der Arbeit mit dem Buch und der Inventor-Software.

Detlef Ridder

Germering, 17.9.2025

Vorüberlegungen zu einfachen 3D-Konstruktionen

In diesem einleitenden Kapitel wird in die Vorgehensweise des Inventor-Programms und die grundlegende Benutzung eingeführt. Nach prinzipiellen Betrachtungen lernen Sie den Inventor-Bildschirm mit seinen Bedienelementen anhand mehrerer Beispiele kennen.

Zuerst geht es darum, dass Sie sich eine Vorgehensweise für das aktuelle Problem überlegen. Hierzu finden Sie am Anfang einige prinzipielle Überlegungen zur Lösung dreidimensionaler Aufgaben mit Inventor.

Zur Einleitung folgt deshalb eine Präsentation der grundlegenden Konstruktionsprinzipien bei Inventor. Sie erfahren, wie ein Modell aufgebaut werden kann. Diese vorgeschlagenen Wege sind durchaus nicht immer zwingend. Zu einer Konstruktionsaufgabe gibt es immer verschiedene Vorgehensweisen. Was Ihnen dabei als einfacher oder logischer erscheint, müssen Sie dann entscheiden. Aber schauen wir uns zuerst die Möglichkeiten an, die Inventor bietet. Danach folgen einige einfache Konstruktionen, bei denen Sie dann sofort mitmachen können.

Dabei werden Sie merken, dass abgesehen vom Grundlagenwissen noch viele weitere Details des Programms beherrscht werden müssen. Diese detaillierteren Themen werden dann in den nachfolgenden Kapiteln erläutert.

1.1 Die Phasen der Inventorkonstruktion

In Inventor werden dreidimensionale Mechanikteile in folgenden Schritten erstellt:

- I. Erstellung der einzelnen 3D-Volumenkörper,
- Zusammensetzen der Körper zur Baugruppe einschließlich der Bewegungsmöglichkeiten und
- 3. *Ableiten der Zeichnungsansichten* einzelner Komponenten und/oder des gesamten Mechanismus als Baugruppe.
- Erstellen einer animierten Explosionsdarstellung, auch als PRÄSENTATION bezeichnet.

In jedem Schritt des Konstruktionsablaufs entstehen dadurch auch Dateien mit ganz spezifischen Endungen:

Die Volumenkörper werden in *.ipt-Dateien gespeichert. Hinter der Abkürzung steht der Begriff »Inventor-ParT«, kurz IPT oder deutsch Bauteil (Abbildung 1.1).

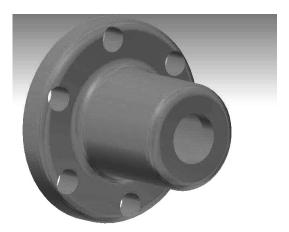


Abb. 1.1: Ein Bauteil (* . i pt-Datei)

2. Für die Baugruppen heißen die Dateien *.iam, das steht für »Inventor-AsseMbly« (Abbildung 1.2).

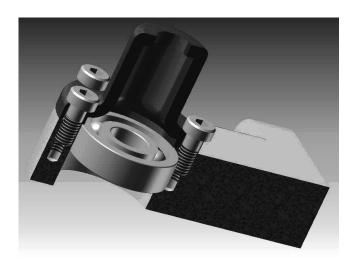


Abb. 1.2: Eine Baugruppe (* . i am-Datei) im Halbschnitt

3. Die abgeleiteten Zeichnungsdateien sind *.dwg-Dateien, eigentlich das Dateiformat von AutoCAD (DWG steht für »DraWinG«), das Format *.idw für »Inven-

tor-DraWing« ist nicht mehr die Standard-Vorgabe, weil das DWG-Format universeller ist. Zeichnungsdateien können von Bauteilen und/oder Baugruppen erstellt werden (Abbildung 1.3, Abbildung 1.4)

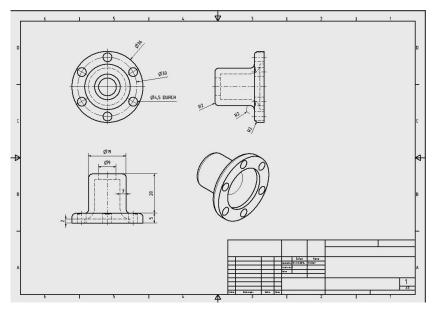


Abb. 1.3: Die technische Zeichnung eines Bauteils (* . dwg-Datei)

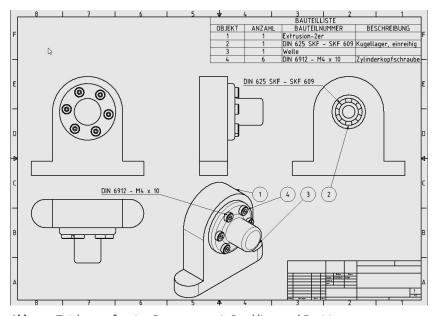


Abb. 1.4: Zeichnung für eine Baugruppe mit Stückliste und Positionsnummern

4. Die Explosionsdarstellung entsteht in einer *.ipn-Datei. Die Endung steht für »Inventor-PresentatioN«, kurz IPN (Abbildung 1.5). Auch aus einer Präsentation kann eine Zeichnung erstellt werden (Abbildung 1.6).

Zunächst soll in den ersten Kapiteln die Erstellung von 3D-Bauteilen geschildert werden. Dann folgt die Zeichnungsableitung und am Ende die Darstellung für den Zusammenbau der Baugruppen.

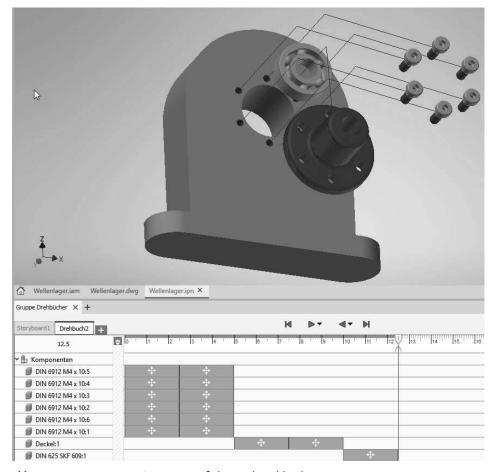


Abb. 1.5: Präsentation mit Animationspfaden und Drehbuch (unten)

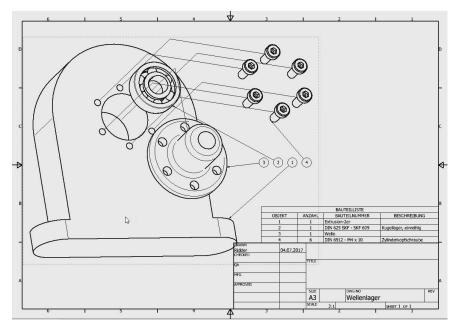


Abb. 1.6: Zeichnung der Explosionsansicht mit Positionsnummern und Stückliste

1.2 Wie entsteht ein 3D-Modell?

Um einen komplexen dreidimensionalen Gegenstand konstruktiv zu erstellen, ist es notwendig, sich eine Vorstellung vom schrittweisen Aufbau aus einfacheren Grundelementen zu machen. Diese Grundelemente können einfache Grundkörper sein, zweidimensionale Konturen, die durch Bewegung eine dritte Dimension erhalten, eventuell auch Flächen oder eine Art knetbare Volumenkörper, sogenannte Freiformelemente.

1.2.1 Grundkörper

Inventor bietet vier einfache *Grundkörper* an: QUADER, ZYLINDER, KUGEL und TORUS (Abbildung 1.7).

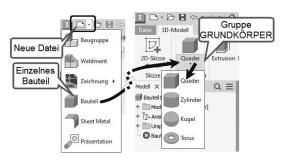


Abb. 1.7: Grundkörper in Inventor

Die Gruppe Grundkörper ist allerdings vorgabemäßig nicht aktiv. Um sie zu aktivieren, können Sie auf einen der *Gruppentitel* am unteren Rand der *Multifunktionsleiste* mit der rechten Maustaste klicken, im Menü dann Gruppen anzeigen anklicken und Grundkörper mit einem Häkchen versehen (Abbildung 1.8).

Abb. 1.8: Gruppe GRUNDKÖRPER aktivieren

Beim ersten Volumenkörper müssen Sie aus den drei orthogonalen Ebenen die gewünschte Konstruktionsebene aussuchen und anklicken. Hier wird üblicherweise die XY-Ebene gewählt. Danach ist noch der Mittelpunkt des Körpers anzugeben, beim ersten Element meist der Nullpunkt. Dann folgen die Abmessungen wie Länge, Breite oder Radius und die Höhe in Z-Richtung.

Für jeden weiteren Körper ist wieder eine Konstruktionsebene – meist eine Fläche eines bestehenden Körpers – und eine Position zu wählen. Dann sind die Abmessungen einzugeben, dabei ist auch die Richtung für die Z-Ausdehnung zu beachten, und dann ist anzugeben, in welcher Art der neue Körper mit bereits vorhandenen kombiniert werden soll. Es gibt insgesamt vier Möglichkeiten •• Die ersten drei davon werden auch als *boolesche Operationen* bezeichnet, weil sie aus der Mengenlehre stammen:

- VEREINIGUNG – ein Volumenkörper wird additiv hinzugefügt, wobei eine Überlagerung von Volumen ignoriert wird,
- DIFFERENZ 📮 ein Volumenkörper wird subtraktiv hinzugefügt, das heißt, das Volumen wird abgezogen, wo Überlappung auftritt. Man kann das auch als Ausklinkung bezeichnen.
- SCHNITTMENGE 🗐 von den neuen und dem bereits existierenden Volumenkörper wird nur der Bereich beibehalten, wo beide überlappen.
- NEUER VOLUMENKÖRPER 🖭 das neue Volumen bleibt von bestehenden getrennt, wobei eventuelle Überlappungen zu keinem Fehler führen. Eine Kombination mit den booleschen Operationen kann dann auch *später* erfolgen.

So können diese Körper nun zu einem Gesamtkörper zusammengefügt werden (Abbildung 1.9). Für den ersten Volumenkörper gibt es nur die Option NEUER VOLUMENKÖRPER ➡.

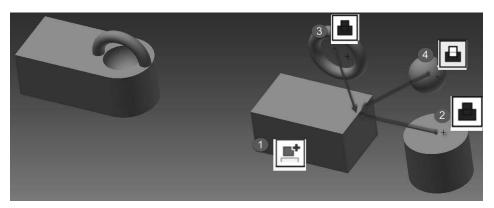


Abb. 1.9: Zusammensetzung eines 3D-Modells aus Grundkörpern

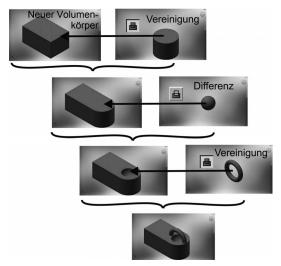


Abb. 1.10: Schrittweiser Zusammenbau aus den Grundkörpern

1.2.2 Bewegungskörper

Die meisten 3D-Teile werden aus zweidimensionalen geschlossenen *Profilen* durch *Bewegung* erzeugt. Generell nennt man solche Modelle auch *Bewegungskörper*. Im Prinzip sind auch die Grundkörper so entstanden.

Profile

Das wichtigste Element eines Bewegungskörpers ist ein *Profil*. Darunter versteht man eine oder mehrere einfach geschlossene Konturen. *Einfach* bedeutet, dass sich jede Einzelkontur nicht selbst überschneiden darf, also beispielsweise nicht die Form einer Acht haben darf. In den Icons der Bewegungsbefehle sind die zugrunde liegenden *Profile* durch eine weiße Fläche angedeutet (siehe Abbildung I.II).

Mehrere Konturen

Wenn ein Profil aus mehreren Konturen besteht, muss jede für sich einfach sein. Um ein Gebilde in Form einer Acht zu verarbeiten, muss nur dafür gesorgt sein, dass es zwei einzelne Konturen sind, die sich zwar punktuell berühren dürfen, aber keine übergreifenden Begrenzungskurven aufweisen.

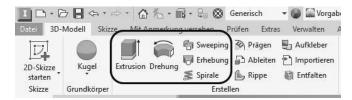
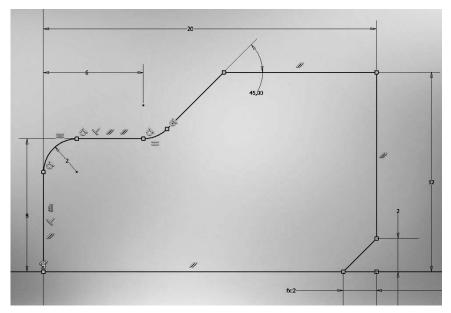



Abb. 1.11: Bewegungskörper in Inventor

Das *Profil* wird als zweidimensionale Konstruktion erstellt und als SKIZZE bezeichnet. Inventor achtet besonders darauf, dass diese Skizze vollständig bemaßt ist und auch sonst durch seine geometrischen Abhängigkeiten vollständig und eindeutig bestimmt ist. Sobald jeweils ein Teil der Kontur geometrisch durch Maße und/oder Abhängigkeiten eindeutig bestimmt ist, zeigt die Farbe das an, indem sie von Violett nach Schwarz wechselt (bei Benutzung des vorgegebenen Farbschemas HELL).

Abb. 1.12: Zweidimensionale vollständig bestimmte Skizze mit angezeigten geometrischen Abhängigkeiten

Extrusion

Die häufigste Art der Bewegung ist die lineare Bewegung eines Profils. Diese 3D-Modellierung wird als *Extrusion* oder auch *Austragung* bezeichnet.

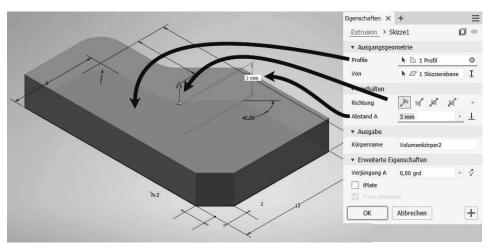


Abb. 1.13: Extrusion eines 2D-Profils zum 3D-Volumenkörper

Drehung

Ein zweidimensionales Profil kann aber auch um eine Achse gedreht werden, um einen 3D-Volumenkörper zu erzeugen. Die Achse kann die Begrenzung des Teils bilden oder außerhalb liegen. Die Aktion wird üblicherweise als *Drehung* bezeichnet oder auch als *Rotation*.

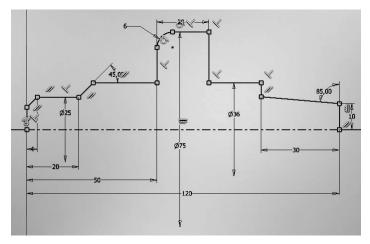


Abb. 1.14: Zweidimensionales Profil mit einer Rotationsachse mit vollständiger Bemaßung und geometrischen Abhängigkeiten

Kapitel 1Vorüberlegungen zu einfachen 3D-Konstruktionen

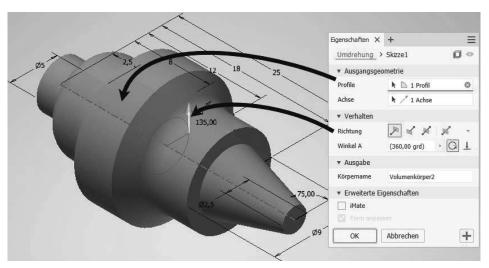


Abb. 1.15: Mit Funktion DREHUNG erzeugtes Rotationsteil

Sweeping

Ein komplexerer Volumenkörper kann durch Bewegung eines Profils entlang eines zwei- oder dreidimensionalen Pfads erzeugt werden. Hierfür ist der englische Begriff Sweeping üblich.

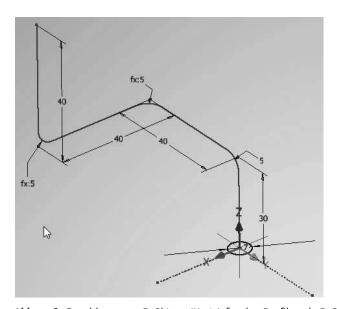


Abb. 1.16: Geschlossene 2D-Skizze (Kreis) für das Profil und 3D-Skizze für den Pfad

Beispielsweise können Rohrleitungen damit leicht aus einem kreisrunden Querschnittsprofil und einer dreidimensionalen Leitkurve erstellt werden. Die Leitkurve wird als *Pfad* bezeichnet.

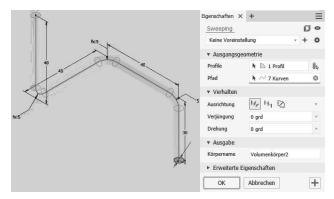


Abb. 1.17: Rohrleitung erstellt mit der Funktion SWEEPING aus Profil und Pfad

Lofting oder Erhebung

Aus der konventionellen Konstruktionsweise von Schiffsrümpfen und Flugzeugkomponenten wie Rümpfen oder Tragflächen kommt eine weitere komplexe Formgebung für 3D-Körper, das *Lofting* . *Lofting* bedeutet die Erzeugung von Volumenkörpern aus vorgegebenen Querschnitten, üblicherweise als *Spanten* bezeichnet. Hierzu sind mehrere geschlossene Profile über- oder hintereinander nötig. Die Eindeutschung führte bei Autodesk zu dem Begriff Erhebung. Mit der Funktion Erhebung werden diese Profile dann in der richtigen Reihenfolge angewählt, und der Volumenkörper entsteht als geglätteter oder linearer Übergang von Profil zu Profil.

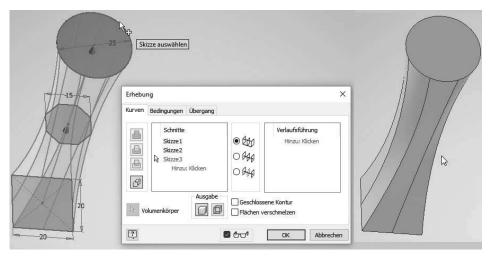


Abb. 1.18: Drei Profilskizzen zur Erstellung eines Lofting-Körpers

Spirale

Der Befehl Spirale sit eine spezielle Form des Sweepings. Es entsteht praktisch dasselbe, als ob Sie ein Profil entlang einer Spiralkurve sweepen. Da aber Spiralen und Wendeln im technischen Bereich für Schrauben, Federn usw. eine wichtige Rolle spielen, wurde speziell für den Fall eines solchen Sweeps der besondere Befehl Spirale geschaffen. Hierbei ist als definierende Geometrie nämlich nur eine einzige Skizze mit einer Achse und dem Profil nötig, die beide in einer Ebene liegen.

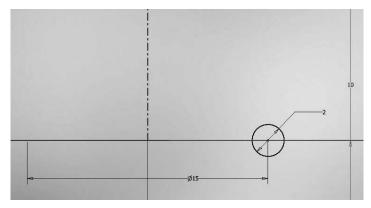


Abb. 1.19: Skizze mit Achse und Kreis-Profil für Spirale

Der Abstand von der Achse definiert schon den Radius der Spirale oder Wendel und die restliche Form wird dann über einen Dialog festgelegt. Natürlich sind auch Übergangsformen zwischen Spirale und Wendel möglich, wie die konische Wendel, sowie die für Spiralfedern nötige Gestaltung der Endstücke.

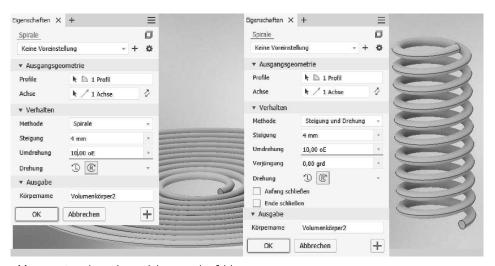


Abb. 1.20: Spirale und Wendel mit Dialogfeldern

Boolesche Operationen

Die bisher beschriebenen Körperformen können nun wie oben schon die Grundkörper miteinander kombiniert werden, mit VEREINIGUNG , DIFFERENZ und SCHNITTMENGE . Man nennt sie boolesche Operationen nach einem der Väter der Mengenlehre, weil sie wie die gleichnamigen Funktionen der Mengenlehre definiert sind.

- Bei der Operation VEREINIGUNG werden die einzelnen Volumenkörper überlagert, sodass ein neuer Gesamtkörper entsteht. Teile der Körper, die überlappen, tragen dabei zum Gesamtvolumen nur einfach bei.
- Bei der DIFFERENZ 🖻 gibt es ein *Basisteil*, von dem ein zweites Teil, das sogenannte *Arbeitsteil*, abgezogen wird. Vom Basisteil wird also der Überlappungsbereich entfernt.
- Bei der SCHNITTMENGE bleibt von den beteiligten Körpern nur der Teil übrig, an dem sie überlappen.

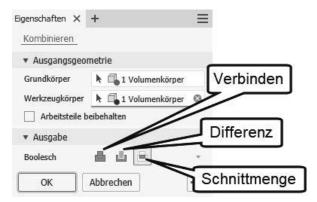


Abb. 1.21: Boolesche Operationen VEREINIGUNG, DIFFERENZ und SCHNITTMENGE

Das Kombinieren der einzelnen Volumenkörper kann direkt schon bei der Erzeugung geschehen. So können Sie beim Extrudieren eines zweiten Profils angeben, welche der booleschen Operationen in Zusammenhang mit dem vorher schon erzeugten Volumenkörper angewendet werden soll (Abbildung 1.22). Im Beispiel wurde die zweite Extrusion von der Skizzierebene aus nach vorn und nach hinten ausgeführt.

Alternativ können Sie die zweite Extrusion aber auch als separaten Volumenkörper erzeugen lassen. Dadurch entsteht dann ein sogenanntes Multipart-Teil (Abbildung 1.23). Dann können Sie später noch mit dem Befehl 3D-MODELL|KOMBINIEREN die nötigen booleschen Operationen ausführen lassen (Abbildung 1.24 oben).

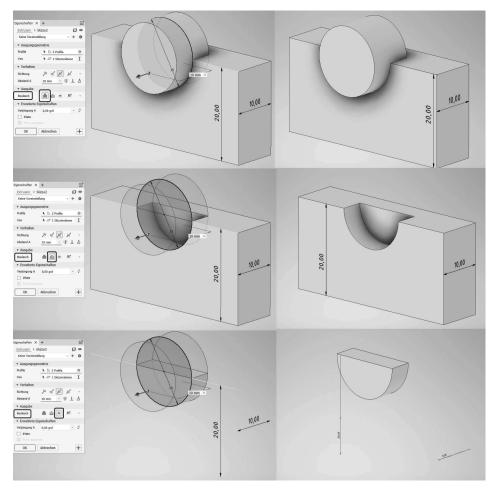


Abb. 1.22: Wirkung der booleschen Operationen

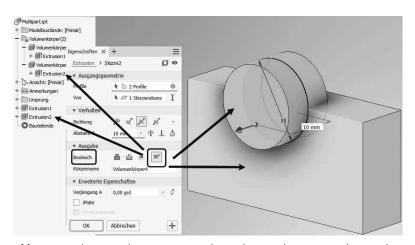
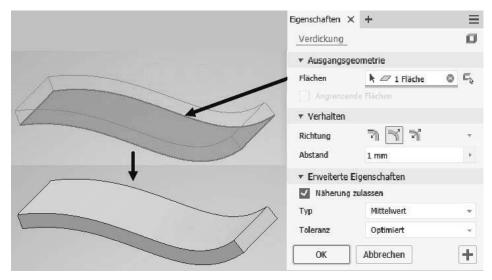


Abb. 1.23: Multipart-Teil mit zweitem Volumenkörper als eigenständiges Teil

Es gibt mehrere Gründe, Multipart-Teile zu erzeugen. Einmal kann es sein, dass beide oder mehrere Teile später noch einer gemeinsamen Oberflächen-Modellierung unterzogen werden sollen. Andererseits ist es oft auch sinnvoll, ein neues Teil unter Berücksichtigung von Bezugskanten eines schon bestehenden Teils zu erstellen. Man spricht dann auch von einer Layout-Konstruktion. Eine Multipart-Konstruktion kann mit Verwalten Komponenten erstellen auch nachträglich dann wieder in ihre Einzelteile zerlegt werden (Abbildung 1.24 unten).

Abb. 1.24: Befehle KOMBINIEREN und KOMPONENTEN ERSTELLEN für Multipart-Konstruktionen


Um nun also mit den verfügbaren Konstruktionsweisen aus Grundkörpern und Bewegungskörpern praxisrelevante 3D-Teile zu erzeugen, muss der Konstrukteur analysieren, welche dieser Vorgehensweisen jeweils anzuwenden ist, damit mittels der booleschen Operationen die gewünschten Teile daraus zusammengebaut werden können.

1.2.3 Erstellung aus Flächen durch Verdicken

Volumenkörper können auch noch auf andere Arten erstellt werden. Dazu zählt die Generierung aus einer dreidimensionalen Fläche, der eine Dicke zugeordnet wird: 3D-MODELL|VERDICKUNG/VERSATZ ℯ.

Abb. 1.25: Funktion 3D-MODELL|VERDICKUNG

Abb. 1.26: Oben: Fläche als Extrusion eines offenen Profils, unten: Volumenkörper durch Verdicken der Fläche

1.2.4 Erstellung aus geschlossenem Flächenverbund

Auch aus einer Anzahl von Flächen, die einen Volumenbereich wasserdicht einschließen, kann dieses Volumen erzeugt werden mit der Funktion 3D-MODELL| OBERFLÄCHE|FORMEN

Abb. 1.27: Funktion 3D-MODELL|OBERFLÄCHE|FORMEN

Tipp: Vollständige Anzeige einer Gruppe

Die Gruppen einer Multifunktionsleiste sind oft komprimiert in der Leiste dargestellt. Sie können aber eine Gruppe am Gruppentitel mit gedrückter Maustaste aus der Leiste herausziehen. Dann werden auch die Texte ausführlicher angezeigt. Um eine Gruppe wieder anzudocken, gehen Sie mit dem Cursor an die rechte Kante, bis der Randbereich erscheint, und klicken dann auf das kleine Werkzeug rechts oben auf dem Rand.

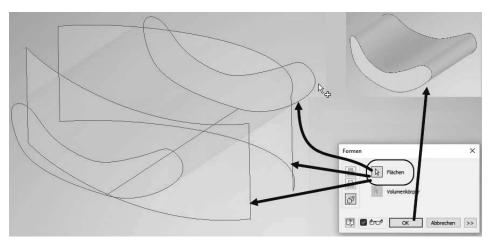


Abb. 1.28: Links: drei Flächen, die wasserdicht einen Volumenbereich einschließen, rechts: mit Formen daraus erstelltes Volumen

1.2.5 Erstellung aus Freiform-Geometrie

Sie können im Register 3D-MODELL in der Gruppe FREIFORM ERSTELLEN auch Möglichkeiten zur Erstellung von *Freiform-Grundkörpern* und *-Flächen* benutzen.

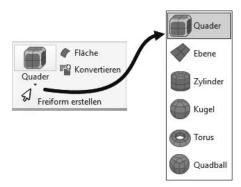


Abb. 1.29: Grundkörper für Freiform-Geometrien

Diese Grundkörper können Sie nach Erstellung in einer extra Multifunktionsleiste Freiform mit verschiedensten Hilfsmitteln bearbeiten. In Abbildung 1.31 ist aus dem ursprünglichen Freiform-Quader durch Umformungen fast ein Auto geworden.

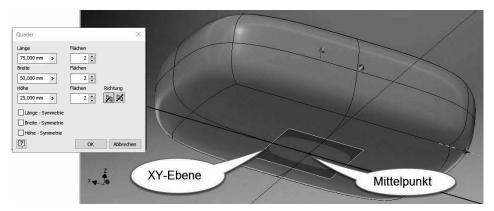


Abb. 1.30: Freiform-Quader mit Grundeinstellungen

Um diese Freiform-Geometrie mit den normalen Grundkörpern oder Bewegungskörpern zu kombinieren, benutzen Sie die Funktion 3D-MODELL|ÄNDERN|KOMBINIEREN . So wurden hier von dem Freiform-Körper die beiden Zylinder mit einer Differenz-Operation abgezogen, um die Radaussparungen in die Karosserie einzusetzen.

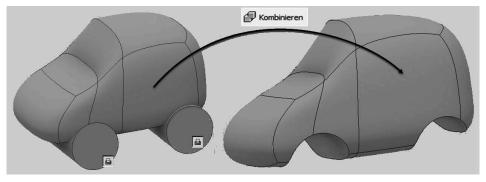


Abb. 1.31: Modifizierte Freiformgeometrie kombiniert mit Zylindern durch Differenzbildung

1.3 Analyse der Aufgabe vor der Konstruktion

Bevor Sie also mit einer 3D-Konstruktion beginnen, sollten Sie überlegen, aus welchen der oben gezeigten Komponenten bzw. mit welchen Verfahren das gewünschte Volumen zusammengesetzt werden kann. Diese Analyse muss nicht bei jedem einzelnen Konstrukteur zum gleichen Ergebnis führen. Es gibt in der Regel oft mehrere Möglichkeiten, einen komplexen Körper zusammenzusetzen. Bevor Sie sich für die eine oder andere Variante entscheiden, sollten Sie an zwei weitere Bedingungen denken. Die Konstruktion sollte so gestaltet sein, dass sie

einerseits mit der gewünschten Herstellungsweise wie Drehen, Fräsen, Gießen oder Pressen verträglich ist. Andererseits werden Sie oft Variantenteile haben wollen, sodass später weitere Teile einer Variantenfamilie durch einfaches Verändern der Bemaßungen entstehen können.

1.3.1 Modellierung aus Grundkörpern und Bewegungskörpern

Abbildung 1.32 zeigt ein Teil, das unterschiedlich zusammengesetzt werden kann. Im oberen Bereich werden drei Grundkörper verwendet, alles Zylinder. Einer der Zylinder verlangt allerdings eine Grundebene, die um 90° gedreht ist. Zylinder 1 und 2 werden mit der Operation Vereinigung zusammengefügt, während der dritte Zylinder dann mit Differenz vom Volumen abgezogen wird und zu der Öffnung führt. Als letzte Komponente kommt noch ein extrudiertes Profil hinzu, das auf einer Skizze basiert.

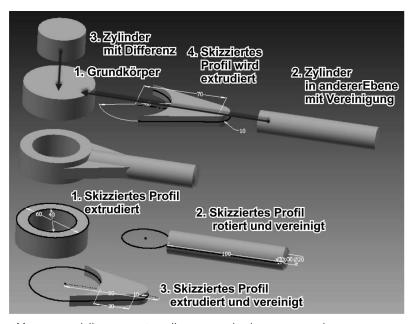


Abb. 1.32: Modellieren mit Grundkörpern und/oder Bewegungskörpern

In der unteren Hälfte werden alle Komponenten aus skizzierten Profilen heraus erzeugt. Das erste Profil enthält gleich zwei Kreise und daraus entsteht durch Extrusion dann der Ring. Die zweite Skizze wird mit dem Befehl Drehung rotiert. Das dritte Profil wird in der gleichen Ebene erzeugt, dann extrudiert und wie alles hier mit Vereinigung hinzugefügt. Alle drei Profile können in derselben Ebene liegen, da die Extrusion gleichzeitig noch oben und unten symmetrisch erfolgen kann.

1.3.2 Modell aus zwei Extrusionen

Einfache Teile können beispielsweise aus nur zwei Profilen, die meist senkrecht zueinanderstehen, durch Extrusion erstellt werden. Das erste ovale Profil entsteht in der XY-Ebene und wird in Z-Richtung extrudiert. Senkrecht dazu erstellen Sie die zweite Skizze in der XZ-Ebene bzw. der Teilefläche und extrudieren es mit der Option SCHNITTMENGE in Y-Richtung.

Dass die zweite Skizze dabei teilweise »in der Luft hängt«, spielt hier keine Rolle. Sie dürfte sogar komplett über der Teilefläche mit einem Abstand schweben. Das fertige Teil zeigt Abbildung 1.37. Die Extrusion des zweiten Profils stanzt den Umriss praktisch aus dem Teil heraus. Von dieser Vorstellung leitet sich auch die Bezeichnung »Stanzmodell« für dieses Verfahren zur 3D-Modellierung ab.

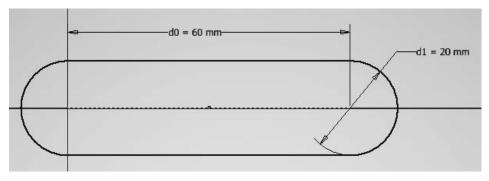


Abb. 1.33: Erste Skizze in der Ansicht OBEN

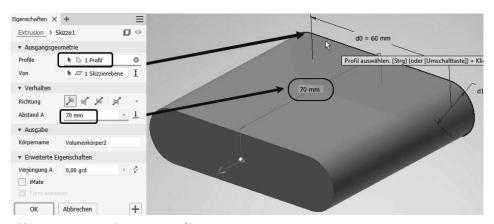


Abb. 1.34: Extrusion des ersten Profils

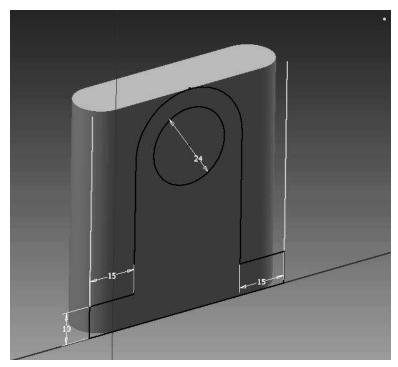
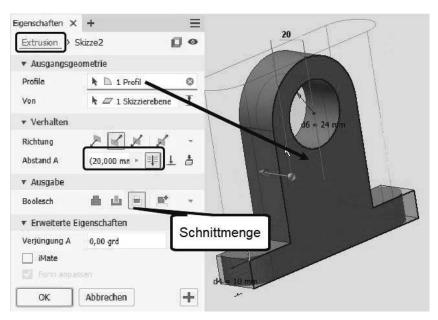



Abb. 1.35: Skizze für zweite Extrusion

Abb. 1.36: Extrusion des zweiten Profils, Zusammenfügung mit der ersten Extrusion mit der Operation SCHNITTMENGE

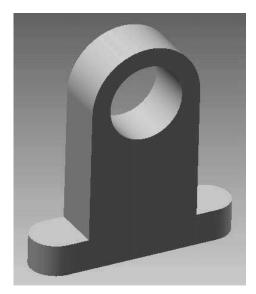


Abb. 1.37: Fertiges Bauteil

1.3.3 Modell aus drei 2D-Darstellungen (Dreitafelbild)

Auch aus einem zweidimensionalen Dreitafelbild (Abbildung 1.38) kann man unter Umständen einen dreidimensionalen Gegenstand erstellen. Die Abbildung zeigt die Ansichten VORNE, OBEN und LINKS für ein Gestell. Im zweiten Schritt wurden die Ansichten in die dazugehörige 3D-Position gedreht.

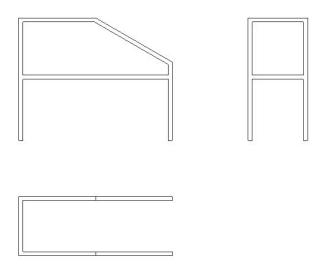


Abb. 1.38: Dreitafelbild der Konstruktion

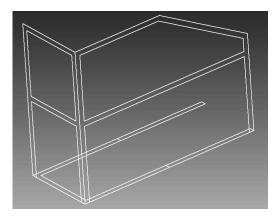


Abb. 1.39: Die drei Ansichten in den korrekten Ebenen gezeichnet

Dann wurde zuerst die Ansicht OBEN um die nötige Höhe in Z-Richtung extrudiert. Ein U-förmiger Extrusionskörper ist entstanden. Dann wurde die Konstruktion aus der Ansicht Vorne in Y-Richtung extrudiert, und zwar mit der Operation Schnittmenge, sodass nur diejenigen Volumenteile erhalten bleiben, die beide Extrusionen gemeinsam haben. Am Schluss wird die Kontur der Ansicht Links auch mit Schnittmenge extrudiert, sodass das Gestell (Abbildung 1.43) dann fertig ist. Auch diese Vorgehensweise wird oft als *Stanzmodell* bezeichnet. Sie müssen sich nur vorstellen, dass die betreffenden Konturen nacheinander aus einem großen Quader herausgestanzt werden.

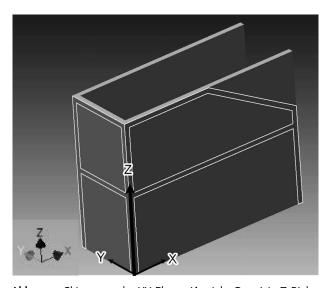
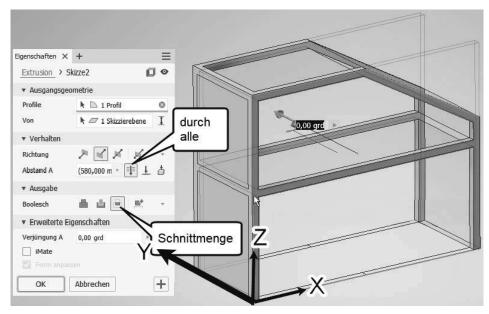
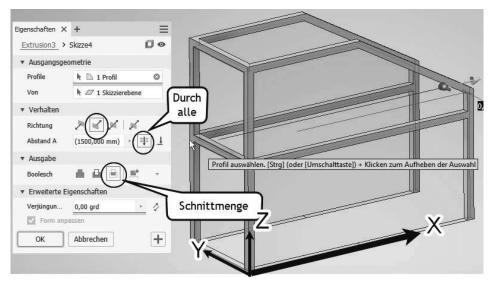




Abb. 1.40: Skizze aus der XY-Ebene (Ansicht OBEN) in Z-Richtung extrudiert

Abb. 1.41: Skizze aus der XZ-Ebene (Ansicht VORNE) in Y-Richtung extrudiert, mit vorherigem Volumenkörper mit Operation SCHNITTMENGE kombiniert

Abb. 1.42: Skizze aus der YZ-Ebene (Ansicht LINKS) in X-Richtung extrudiert, mit vorherigem Volumenkörper mit Operation SCHNITTMENGE kombiniert

Symbole	perspektivisch 68
.dwg 16	Schnittansicht 357
.iam 16	Ansichtssteuerung
.idw 16	Maus 66
.ipt 16, 51	Navigationsleiste 67
1	Anwendungsoptionen 69
Numerisch	Arbeitsachse 158, 195
3D 47	Arbeitsebene
3D-Koordinate 150	definieren 186
3D-Kurve	Arbeitspunkt 197, 252
projizieren 159	Arbeitsteil 27
3D-Modell 57	Aufkleber 228
3D-Skizze 69, 149, 150	Ausklinkung 20
)	Ausrichten 68
A	Ausrichtung
Abhängigkeit 117, 300	aufheben 369
anzeigen 180	Ausschnitt 365
Baugruppe 305	Austragung 23, 200
Einfügen 314	Auswahl
geometrische 180	ändern 188
Koinzident 180	Autodesk App-Store 55
Symmetrie 319	
Tangential 317	В
Typen 120	Basis-Ansatz 42
Winkel 307	Basisebene
Abhängigkeitssymbol	auswählen 81
ausschalten 179	Basislinie 375
Ableiten 221	Basisteil 298
Absolut 151	Baugruppe 295
Adaptives Bauteil 331	Abhängigkeiten 305
Analyse 59	Bauteil
Anpassungspunkt 136	adaptives 331
Ansicht 61	Basisteil 298
ausrichten 83	Bauteilumgebung 57
bearbeiten 364	Bearbeiten
Detailansicht 361	mit Doppelklick 73
geschnitten 411	Befehl
Hilfsansicht 356	eingeben 70
orthogonale 356	Befehlsabkürzung 66
parallel 356	Befehlszeile
	am Cursor 65

Bemaßung 97, 370, 372	Dreitafelbild 36
anzeigen 173	DWF 59
Arten 171	
Bezugsbemaßungen 375	E
Kettenbemaßung 378	Ebene 185
Koordinatenbemaßung 377	Eigenschaften 149
Skizze 171	Einfügen 314
Bemaßungsbefehl 370	Einheiten 371
Bemaßungsstil 371	Einstellungen
Benutzer-Koordinaten-System 285	zurücksetzen 48
Benutzername 69	Element
Benutzeroberfläche 50	platziertes 249
Beschriftung 387	Ellipse 131
Bewegungskörper 21	Entfalten 233
Bezugsbemaßung 375	Erhebung 208
Bezugsrichtung 264	Explosionsdarstellung 15, 294, 397
Biegeradius 69	Extras 60
Biegung	Extrusion 23, 102, 201
3D-Skizze 156	Optionen 102
BKS 285	Optionen 102
Block	F
bearbeiten 149	Fase 100, 259
Explodieren 149	definieren 101
Bogen 130, 155	Skizze 139
mit Knick von 90° 128	
Bohrung 249	Feature 39, 249 Feder 218
Boolesche Operation 27	
Bottom-Up-Prinzip 41, 286	Fertigungsphasen 346 Fläche
Browser 63	
Biomsel of	durch Extrusion 156
C	löschen 275, 281
Cursor-Menü 71	über Drehung 158
Cursor-Menu /1	Flächenverjüngung 262
D	Flyout 55
	Freie Drehung 307
Datei-Menü 52	Freie Verschiebung 307
Dehnen	Freiform
Skizze 165	Grundkörper 31
Detailansicht 361	Freiheitsgrad 179
Dezimalzahl	Fusion 360 62
Schreibweise 125	
Dialogfeld 71	G
Direktbearbeitung 277	Gelenktypen 326
Dokumenteinstellungen 69	Geometrie
Dokument-Registerkarte 63	importiert 244
Drehbar	projizieren 161
Gelenk 326	Geometrietext 141
Drehen 281	Geometrische Abhängigkeit 180
Skizze 165	Gestreckt
Drehung 23, 319	Skizze 167
freie 307	

Gewinde 218, 267	Kurve 108, 138
Gewindekante 383	3D-Skizzen 153
Gleichheitszeichen im Dialogfenster 100	spiralförmige 154
Gleichungskurve 156, 215	über Formel 156
Grafikkarte 47	-
Größenänderung 280	L
Grundeinstellung 52	Längeneingabe
Grundkörper 19, 234	ermöglichen 90
Gruppe 55	Linie-Funktion 92
Gruppen anzeigen 56	Lockerungsmodus 122
	Lofting 25, 200, 208
H	Löschen
Halbschnitt 411	Fläche 281
Hilfe 55, 74	
Hilfsansicht 356	M
Hilfsgeometrie 110	Maßlinie
Hilfslinie 184	Abstand anpassen 379
1	Maßtexthöhe 372
I	Maßwert
iAssembly 345	übernehmen 176
iFeature 272	Maus
iMate 323	Ansichtssteuerung 66
Importieren 229	Mausrad
Importierte Geometrien 244	Pan 67
Inhaltscenter 336	Maximum 380
Inventor	Medianwert 175, 380
starten 49	Migrieren
zurücksetzen 48	Einstellungen 49
Inventorkonstruktion	Mini-Dialog 71
Phasen 15	Minimenü 71
Iso-Ansicht 153	Minimum 380
	Mittellinie 184
K	erstellen 384
Kettenbemaßung 378	Mittelpunkt 250
Kombinieren 32, 274	Modell
Kontextmenü 72	aus zwei Extrusionen 34
Koordinate 152	Modellierungsfehler 244
Typen 115	Modellzustand 345, 346
Koordinatenbemaßung 377	Multifunktionsleiste 70
Koordinatendreibein 150	Multipart-Konstruktion 199, 286
Koordinatensystem 285	Multipart-Teil 27
Kopieren	Multivalue-Liste 428
Skizze 164	Multivalue-Parameter 428
Körper	Muster
reparieren 244	in Skizzen 168
verschieben 276	Skizze 168
Kreis 131	
Kugel 237	N
Kugelförmig	Nachfolgende Null 371
Gelenk 326	Navigationsleiste 67
	,

Nennwert 380	Punkt
Neue Funktionen 75	Arbeitspunkt 197, 252
markieren 60	aus Excel importieren 144, 153
Null	in 3D-Skizze 156
nach Komma 371	Skizze 142
Nullpunkt 109	Punktfang 111
Nullpunktsymbol	
entfernen 378	Q
	Quader 235
0	QuickInfo 69
Objekt	4
kopieren 277	R
wählen 117	RAM-Speicher 47
Objektfang III	Rasterfang 307
Online-Hilfe 55	Rastergitter 113
herunterladen 75	Rasterlinie 113
Optionen 69	Rastpositionen III
Orbit 68	Rechteck 132
Orthogonale Ansicht 356	Rechteckig
Orthogonale Mislem 330	Skizzen-Muster 168
P	
Pan 67	Register 55 Relativ 151
Parabel 138, 139	Relaxmodus 122
Parallelansicht 354, 356	
	Reparaturumgebung 244, 277 Revit-Familienteil 297
Parallelprojektion 68	
Parameter 421	Rippe 225
Parametertabelle 421	Rotation 23, 200
Passungsangabe 175	Rundung 100, 254
Perspektivisch Ansicht 68	Skizze 139
	S
Pfad 25 dreidimensional 216	
Planar	Schlüsselparameter 425
	Schnellzugriff-Werkzeugkasten 53
Gelenk 326	Schnittansicht 357
Platzieren 298 Polar	Schnittdarstellung 411
Skizze 168	Schnittkanten
	projizieren 161, 170
Prägen 220	Schnittkurve
Präsentation 15, 294, 397	3D-Skizze 156
Präzise Eingabe 151	Schraube 340
Produktaktivierung 49	Sicherungsdatei 294
Profil 21	Silhouettenkurve
Programmleiste 51	3D-Skizze 158
Projekt 293	Skalieren 280
anlegen 78	Skizze 166
Projizieren	Skizze 58
Geometrie 161	3D 149
Schnittkanten 161, 170	aus AutoCAD importieren 145
Prüfen 59	Bemaßung 171

erstellen 89	Trennen 264, 265
Fasen 139	Skizze 166
Kurve 153	Trimmen siehe
prüfen 178	
Punkt 142	U
Rundung 139	Überbau-Ansatz 42
Text 141	Umgebungen 62
Skizzenanalyse 182	0 0
Skizzierebene 69	V
ausrichten 89	Variante 345
beim Skizzieren aktivieren 85	Verbindung 326
Skizzierfunktion 107	Verdickung 269
Skizziermodus 81	Vereinfachungen 346
Skizzierpunkt 143, 250	
Software-Voraussetzung 46	Verjüngung 154
Spante 25	Versatz 269 Skizze 167
Speichern 82	· ·
Spirale 217, 218	Verschiebbar
Spiralförmige Kurve 154	Gelenk 326
Spline 136, 155	Verschieben 279
Splinekurve 137	Skizzengeometrie 164
	Verschiebung
Spurlinien 90	freie 307
Stanzmodell 34, 37	Verwalten 60
Starr	ViewCube 68
Gelenk 326	Viewer 47
Start 49	Volumen
Startbildschirm 49	analysieren 32
Statusleiste 64	Volumenkörper
Stückliste 288	erstellen 29, 199
Stutzen	Multipart-Konstruktion 199
Skizze 165	Vorgängerversion 49
Stützpunktpolygon 136	
Sweeping 24, 214	W
Volumenkörper 215	Wandung 261
Symmetrie	Wendel 218
Abhängigkeit 319	Werkseinstellungen 48
Symmetrielinie 111	Werkzeugkasten 70, 71
·	Wiederherstellungsdatei 69
T	Winkel 315
Tabelle	Abhängigkeit 307
im Browser 430	Abitatigigkett 30/
Tangential	Z
Abhängigkeit 317	
Teilevariante 346	Zeichenfunktion
Testversion 45	Fasen 100
	Linie-Funktion 92
Text 141	Rundung 100
Skizze 141	Übersicht 91
Top-Down 41	Zeichnen
Torus 87, 238	Funktionen 108

Zeichnung
erstellen 351
Zeichnungsdatei 51
Zeichnungsdateityp 69
Zeichnungsressource 48
Zoomen 67
Zugrichtung 264

Zurücksetzen 48 Inventor-Einstellungen 48 Programm 48 Zusammenarbeiten 62 Zylinder 236 Zylindrisch Gelenk 326